### Almost Unbiased Ridge Estimator in the Inverse Gaussian Regression Model

#### Abstract

#### References

Algamal, Z. Y. (2018). Shrinkage estimators for gamma regression model. Electronic Journal of Applied Statistical Analysis, 11(1):253-268.

Algamal, Z. Y. and Lee, M. H. (2017). A novel molecular descriptor selection method in qsar classication model based on weighted penalized logistic regression. Journal of Chemometrics, 31(10):e2915.}

Algamal, Z. Y., Lee, M. H., Al-Fakih, A. M., and Aziz, M. (2015). High-dimensional qsar prediction of anticancer potency of imidazo [4, 5-b] pyridine derivatives using adjusted adaptive lasso. Journal of Chemometrics, 29(10):547-556.

Babu, G. J. and Chaubey, Y. P. (1996). Asymptotics and bootstrap for inverse Gaussian

regression. Annals of the Institute of Statistical Mathematics, 48(1):75-88.

De Jong, P. and Heller, G. Z. (2008). Generalized linear models for insurance data. Technical report, Cambridge University Press.

Heinzl, H. and Mittlbock, M. (2002). Adjusted R2 measures for the inverse Gaussian regression model. Computational Statistics, 17(4):525-544.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55{67.

Khalaf, G. and Shukur, G. (2005). Choosing ridge parameter for regression problems.

Kibria, B. G. (2003). Performance of some new ridge regression estimators. Communications in Statistics-Simulation and Computation, 32(2):419{435. Lemeshko, B. Y., Lemeshko, S. B., Akushkina, K. A., Nikulin, M. S., and Saaidia,

N. (2010). Inverse Gaussian model and its applications in reliability and survival analysis. In Mathematical and statistical models and methods in reliability, pages 433-453. Springer.

Liu, G. and Piantadosi, S. (2017). Ridge estimation in generalized linear models and proportional hazards regressions. Communications in Statistics-Theory and Methods, 46(23):11466-11479.

Mackinnon, M. J. and Puterman, M. L. (1989). Collinearity in generalized linear models. Communications in statistics-theory and methods, 18(9):3463-3472.

Malehi, A. S., Pourmotahari, F., and Angali, K. A. (2015). Statistical models for the analysis of skewed healthcare cost data: a simulation study. Health economics review, 5(1):11.

Mansson, K. and Shukur, G. (2011). A Poisson ridge regression estimator. Economic Modelling, 28(4):1475-1481.

Segerstedt, B. (1992). On ordinary ridge regression in generalized linear models. Communications in Statistics-Theory and Methods, 21(8):2227{2246.

Singh, B., Chaubey, Y., and Dwivedi, T. (1986). An almost unbiased ridge estimator. Sankhya: The Indian Journal of Statistics, Series B, pages 342-346.

Uusipaikka, E. (2008). Condence intervals in generalized regression models. Chapman and Hall/CRC.

Yahya Algamal, Z. (2018). Performance of ridge estimator in inverse Gaussian regression model. Communications in Statistics-Theory and Methods, pages 1-14.

Full Text: pdf