Estimation of Parameters of Exponentiated Pareto Distribution for Progressive Type-II Censored Data with Random Removals Scheme
Abstract
In this paper, we propose maximum likelihood estimators and Bayes estimators of parameters of exponentiated Pareto distribution under general Entropy loss function and squared error loss function for Progressive type-II censored data with binomial removals. The maximum likelihood estimators and corresponding Bayes estimators are compared in terms of their risks based on simulated samples from exponentiated Pareto distribution.
References
W. M. Affy (2010). On estimation of the exponentiated pareto distribution under dierent sample scheme. Applied Mathematical Sciences, 4(8):393-402.
N. Balakrishnan (2007). Progressive methodology : An appraisal (with discussion). Test, 16 (2):211-259.
N. Balakrishnan and N. Kannan (2001). Point and Interval Estimation for Parameters of the Logistic Distribution Based on Progressively Type-II Censored Samples, in Handbook of Statisticsm N. Balakrishnan and C. R. Rao, volume 20. Eds. Amsterdam, North- Holand.
R. Calabria and G. Pulcini (1996). Point estimation under - asymmetricloss functions for life - truncated exponential samples. Commun. statist. Theory meth., 25(3):585-600.
A. Childs and N. Balakrishnan (2000). Conditional inference procedures for the laplace distribution when the observed samples are progressively censored. Metrika, 52:253-265.
A. C. Cohen (1963) Progressively censored samples in life testing. Technometrics, pages 327-339.
R. C. Gupta, R. D. Gupta, and P.L. Gupta (1998) Modeling failuretime data by lehman alternatives. Commun. Statist. - Theory Meth., 27(4):887-904.
N. L. Johanson, S. Kotz, and N. Balakrishnan (1994). Continuous Univariate Distributions, volume 1. Wiley, New York, 2 edition.
M. Mousa and Z. Jaheen (2002). Statistical inference for the burr model based on progressively censored data. An International Computers and Mathematics with Applications, 43:1441-1449.
K. Ng, P. S. Chan, and N. Balakrishnan (2002). Estimation of parameters from progressively censored data using an algorithm. Computational Statistics and DataAnalysis, 39:371-386.
G. Shanker Rao (2006). Numerical Analysis. New Age International (P) Ltd.
A. I. Shawky and Hanna H. Abu-Zinadah (2009). Exponentiated pareto distribution : Different method of estimations. Int. J.Contemp. Math.Sciences, 4(14):677-693.
Full Text: pdf