Lockdown and Breakdown in Italians' Reactions on Twitter during the First Phase of Covid-19


Abstract


The article focuses on Italians' reactions to the pandemic on Twitter. During the first phase of the 2020 lockdown (from the beginning of March 2020 - to the beginning of May 2020), a real-time dataset was built, linking data scratching to three events related to the introduction of the Prime Minister's decrees and his press conferences. The chosen observation point is Twitter, platform that allows us to monitor the emergence of discussions on public issues, extremely synchronized with events and news – which is, moreover, a feature of use of this platform. The coronavirus hashtag was chosen as a mechanism to track the development of Italian reactions, following the evolution of its sense and sensemaking and considering it as a polysemic collector. The aim is to identify within the tweets the actors, the topics, and the tone of the debate in an open public space. Furthermore, the analysis is carried out in search of the Italians' perception of the lockdown and whether they are in favor of it because of the defense of public health or they see it as a restriction of their individual freedom. The analysis, which used the socio-constructivist approach of Emotional Text Mining, reveals two explanatory-dimensions in the governance of the crisis: lockdown and breakdown and allows us to understand the reasons for Twitter's instinct-reactions.

Keywords: Coronavirus; Emotional Text Mining; Hashtag Studies; Public Debate; Twitter

References


Akcora C. G., M. Demirbas (2010), Twitter: Roots, influence, applications (Technical report). Department of Computing Science and Engineering, State University of New York at Buffalo, NY. Retrieved January 15, 2021 (http://www.cse.buffalo.edu/tech-reports/2010-03.pdf).

Bentivegna S., R. Marchetti (2015), “Live tweeting a political debate: The case of the ‘Italia bene comune’”, European Journal of Communication, 30(6): 631-647.

Bernard A. (2019), Theory of Hashtag, Cambridge: Polity Press.

Boccia Artieri G. (2020), “Pandemic politics: un nuovo campo discorsivo per la ricerca sulla politica”, Comunicazione politica, 3: 443-449. doi.org/10.3270/98802

Boccia Artieri G., G. La Rocca (2019), “La risonanza mediale degli eventi. Un’analisi del racconto delle dimissioni e dell’elezione dei Pontefici su Twitter”, Problemi dell’informazione, 3: 571-598.

Bol D., M. Giani, A. Blais, and P. J. Loewen (2020), “The effect of COVID-19 lockdowns on political support: Some good news for democracy?”, European Journal of Political Research. doi.org/10.1111/1475-6765.12401.

Bonilla Y., J. Rosa (2015), “#Ferguson: Digital protest, hashtag ethnography, and the racial politics of social media in the United States”, American Ethnologist, 00(0): 4–16.

boyd d. (2010), “Social Network Sites as Networked Publics: Affordances, Dynamics, and Implications”, in Z. Papacharissi (ed.), A Networked Self: Identity, Community, and Culture on Social Network Sites, New York: Routledge, pp. 39-58.

Bruns A. (2005), Gatewatching: Collaborative Online News Production, New York: Peter Lang.

Burgess J., N. K. Baym (2020), Twitter: A Biography, New York: NYU Press.

Bruns A., J. Burgess (2011), “The Use of Twitter Hashtags in the Formation of ad hoc Publics”, in Proceedings of the 6th European Consortium for Political Research (ECPR) General Conference 2011, Reykjavik: University of Iceland.

Bruns A., J. Burgess (2012), “Local and global responses to disaster:

#eqnz and the Christchurch Earthquake”, in Proceedings of Earth: Fire and Rain—Australia and New Zealand Disaster and Emergency Management Conference, Conference, April 16–18, 2012, Brisbane, Australia, pp. 86–103. Retrieved November 15, 2020 (http://snurb.info/files/2012/Local%20and%20Global%20Responses%20to%20Disaster.pdf)

Bruns A., J. Burgess (2014), “Crisis Communication in Natural Disasters. The Queensland Floods and Christchurch Earthquakes”, in K. Weller, A. Bruns, J. Burgess, M. Mahrt, and C. Puschmann (eds.), Twitter and society, New York: Peter Lang, pp. 373-384.

Bruns A., J. Burgess (2015), “Twitter hashtags from ad hoc to calculated publics”, in N. Rambukkana (ed.), Hashtag Publics: The Power and Politics of Discursive Networks, New York: Peter Lang, pp. 13-28.

Bruns A., J. Burgess, K. Crawford, and F. Shaw (2012), “#qldfloods and @QPSMedia: Crisis communication on Twitter in the 2011 south east Queensland floods”, Brisbane, Australia: ARC Centre of Excellence for Creative Industries and Innovation, Queensland University of Technology. Retrieved September 18, 2020 (http://eprints.qut.edu.au/48241/).

Bruns A., E. Liang (2012), “Tools and methods for capturing Twitter data during natural disasters”, First Monday, 17(4). Retrieved January 15, 2021

(http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/3937/3193).

Bruns A., B. Moon, A. Paul, and F. Münch (2016), “Towards a Typology of Hashtag Publics: A Large-Scale Comparative Study of User Engagement across Trending Topics”, Communication Research and Practice, 2(1): 20-46.

Bruns A., S. Stieglitz (2012), “Quantitative approaches to comparing communication patterns on Twitter”,

Journal of Technology in Human Services, 30(3-4): 160-185.

Burnap P., M. L. Williams, L. Sloan, O. Rana, W. Housley, et al. (2014), “Tweeting the terror: Modelling the social media reaction to the Woolwich terrorist attack”, Social Network Analysis and Mining, 4(1): 1–14.

Chang H.C. (2010), “A New Perspective on Twitter Hashtag Use: Diffusion of Innovation Theory”, ASIST, 38(2): 49–57.

Cordella B., F. Greco, P. Meoli, V. Palermo, and M. Grasso (2020), “Educational culture and job market: A text mining approach”, in D.F. Iezzi, D. Mayaffre, and M. Misuraca (eds.), Text Analytics. Advances and Challenges, Heidelberg: Springer, pp. 287-298.

Cordella B., F. Greco, K. Carlini, A. Greco, and R. Tambelli (2018), “Infertilità e procreazione assistita: evoluzione legislativa e culturale in Italia”, Rassegna di Psicologia, 35(3): 45-56.

Dobrin D. (2020), “The Hashtag in Digital Activism: A Cultural Revolution”, Journal of Cultural Analysis and Social Change, 5(1): 1-14.

Dorsey J. (2006), twttr sketch [Flickr photo]. Retrieved January 15, 2021 (http://www.flickr.com/photos/

jackdorsey/182613360/).

Durkheim E. (1893), De la division du travail social, Paris: F. Alcan.

Eriksson M. (2016), “Managing collective trauma on social media: The role of Twitter after the 2011 Norway attacks”, Media, Culture & Society, 38, 365–380.

Faltesek D. (2015), “#Time”, in N. Rambukkana (ed.), Hashtag publics: The power and politics of discursive networks, New York, NY: Peter Lang, pp. 77–86.

Giglietto F., Y Lee (2017), “A Hashtag Worth a Thousand Words: Discursive Strategies Around #JeNeSuisPasCharlie After the 2015 Charlie Hebdo Shooting”, Social Media + Society, 1-15.

Giuliano L., G. La Rocca (2010), Analisi automatica e semi-automatica dei dati testuali: Strategie di ricerca e applicazioni, vol. II, Milano: Led.

Greco F. (2016a), Integrare la disabilità. Una metodologia interdisciplinare per leggere il cambiamento culturale. Milano: Franco Angeli.

Greco F. (2016b), Les Lois et le changement culturel: Le handicap en Italie et en France. Roma: Sapienza Università Editrice.

Greco F. (2019), “Il dibattito sulla migrazione in campagna elettorale: Confronto tra il caso francese e italiano”, Culture e Studi nel Sociale, 4(2): 205-213.

Greco F. (2020), “Le nuove frontiere metodologiche nell’era dei big data: l’Emotional Text Mining”, EyesReg, Giornale di Scienze Regionali, 10(4). Retrieved September 18, 2020 (https://www.eyesreg.it/2020/le-nuove-frontiere-metodologiche-nellera-dei-big-data-lemotional-text-mining/).

Greco F., L. Celardo, and L. M. Alaimo (2018), “Brexit in Italy: Text Mining of Social Media”, in A. Abbruzzo, D. Piacentino, M. Chiodi, and E. Brentari (eds.), Book of short Papers SIS 2018, Milano: Pearson, pp. 767-772.

Greco F., G. La Rocca (2020), “The Topics-scape of the Pandemic Crisis: The Italian Sentiment on Political Leaders”, Culture e Studi del Sociale, 5(1): 335-346.

Greco F., D. Maschietti, and A. Polli (2017), “Emotional text mining of social networks: The French pre-electoral sentiment on migration”, Rivista Italiana di Economia Demografia e Statistica, 71(2): 125-136.

Greco F., S. Monaco, M. Di Trani, B. Cordella (2019), “Emotional text mining and health psychology: the culture of organ donation in Spain”, in M. Carpita, and L. Fabbris (eds.), ASA Conference 2019 - Book od Short Papers Statistics for Health and Well-being, University of Brescia, September 25-27, Padova: CLEUP, pp. 125-129.

Greco F., A. Polli (2019a), “Anatomy of a government crisis. Political institutions, security, and consensus”, in L.S. Alaimo, A. Arcagni, E. di Bella, F. Maggino, and M. Trapani (eds.), Libro dei Contributi Brevi: AIQUAV 2019, VI Convegno Nazionale dell’Associazione Italiana, per gli Studi sulla Qualità della Vita, Benessere Collettivo e Scelte Individuali, Fiesole (FI), Genova: Genova University Press, pp. 177-183.

Greco F., A. Polli (2019b), “Vaccines In Italy: The Emotional Text Mining of Social Media”, Rivista Italiana di Economia Demografia e Statistica, 73(1): 89-98.

Greco F., A. Polli (2020a), “Emotional Text Mining: Customer profiling in brand management”, International Journal of Information Management, 51, 101934. doi.org/10.1016/j.ijinfomgt.2019.04.007.

Greco F., A. Polli (2020b), “The political debate on immigration in the election campaigns in Europe”, in A. Przegalinska, F. Grippa, and P. Gloor (eds.), Digital Transformation of Collaboration, New York: Springer. doi.org/10.1007/978-3-030-48993-9_9

Greco F., A. Polli (2020c), “Crisi industriale nel Mezzogiorno. Glocal sentiment, cittadini e istituzioni”, in R. Veraldi (ed.), Intersezioni sociologiche sullo sviluppo locale, Roma: Edizioni Universitarie Romane, pp. 233-250.

Greco F., A. Polli A. (2020d), “La sicurezza tra percezione pubblica e statistiche ufficiali”, in U. Conti, and C. Federici (eds.), Vivere i territori mediani: identità territoriali, emergenze sociali e rigenerazione dei tessuti urbani, Roma: Meltemi, pp. 37-60.

Greco F., A. Polli (2021), “Security Perception and People Well-Being”, Social Indicator Research, 153(2): 741-758.

Greco F., K. Riopelle, F. Grippa, A. Fronzetti Colladon, and J. Gluesing (2020), “Linguistic Sleuthing for Innovators”, Quality & Quantity. doi.org/10.1007/s11135-020-01038-x

Gupta A., P. Kumaraguru (2012), Twitter explodes with activity in Mumbai blasts! A lifeline or an unmonitored daemon in the lurking?. Retrieved January 15, 2021

(https://repository.iiitd.edu.in/xmlui/handle/123456789/26).

Ipsos (2020), Updates September. A selection of the latest research and thinking from Ipsos teams around the world, Retrieved October 4, 2020

(https://www.ipsos.com/sites/default/files/ct/publication/documents/2020-09/ipsos-update-september-2020.pdf).

Kearney M.W. (2020). rtweet. R package version 0.7.6. Retrieved October 4, 2020 (https://CRAN.R-project.org/package=rtweet).

Kligler-Vilenchik N. (2011), “Memory-setting: Applying agenda-setting theory to the study of collective memory”, in M. Neiger, O. Meyers, and E. Zandberg (eds.), On Media Memory: Collective Memory in a New Media Age, Basingstoke: Palgrave Macmillan, pp. 226-237.

Kroon A. (2017), “More than a Hashtag: Producers’ and Users’ Cocreation of a Loving “We” in a Second Screen TV Sports Production”, Television & New Media, 18(7): 670–688.

Krutrök M. E., S. Lindgren (2018), “Continued Contexts of Terror: Analyzing Temporal Patterns of Hashtag Co-Occurrence as Discursive Articulations”, Social Media + Society, 1-11.

Lancia F. (2018), User’s Manual: Tools for text analysis, T-Lab version Plus 2018.

Laricchiuta D., F. Greco, F. Piras, B. Cordella, D. Cutuli, E. Picerni E., et al. (2018), “The grief that doesn’t speak”: Text mining and brain structure”, in D.F. Iezzi, L. Celardo, M. Misuraca (eds.), JADT’ 18: Proceedings of the 14th International Conference on Statistical Analysis of Textual Data, Rome: Universitalia, pp. 419– 427.

La Rocca G. (2020), “La fuerza de un signo. Perspectivas teóricas para el análisis de los hashtags #”, Barataria, 27: 46-61.

La Rocca G., C. Rinaldi (2020), “LGBTQI+ icons between resistance and normalization: looking for mediatization of emotions in hashtags”, Revue Internationale De Sociologie, 30(1): 26-45.

Lebart L., A. Salem (1994), Statistique Textuelle, Paris, FR: Dunod.

Lovari A. (2020), “Spreading (Dis)Trust: Covid-19 Misinformation and Government Intervention in Italy”, Media and Communication, 8(2): 458–461.

Olteanu A., S. Vieweg, and C. Castillo (2015), “What to expect when the unexpected happens: Social media communications across crises”, in Proceedings of the 18th ACM conference on computer supported cooperative work & social computing, New York, NY: ACM Press, pp. 994–1009.

Rambukkana N. (ed. 2015), Hashtag Publics. The Power and Politics of Discursive Networks, New York: Peter Lang.

Rathnayake C., D.D. Suthers (2018), “Twitter Issue Response Hashtag as Affordances for Momentary Connectedness”, Social Media + Society, 1-14.

Renn O., D. Levine (1991), “Credibility and trust in risk communication”, in R.E. Kasperson, Stallen P.L.M. (eds.), Communicating Risks to the Public, Netherlands: Kluwer Academic Publisher, pp. 175-218.

Ross A. S. (2019), “Discursive delegitimisation in metaphorical #secondcivilwarletters: an analysis of a collective Twitter hashtag response”, Critical Discourse Studies, 1-17.

Said Z.K., J. Silbey (2018), “Narrative Topoi in the Digital Age”, Journal of Legal Education, 68(1): 103-114.

Sarno D. (2009), “Jack Dorsey on the Twitter ecosystem, journalism and how to reduce reply spam. Part II”, Los Angeles Times. Retrieved January 16, 2021 (http://latimesblogs.latimes.com/

technology/2009/02/jack-dorsey-on.html).

Sauter T., A. Bruns (2015), “#auspol: The hashtag as community, event, and material object for engaging with Australian politics”, in N. Rambukkana (Ed.), Hashtag publics: The power and politics

of discursive networks, New York, NY: Peter Lang, pp. 47–60.

Savaresi S.M., D.L. Boley (2004), “A comparative analysis on the bisecting K-means and the PDDP clustering algorithms”, Intelligent Data Analysis, 8(4): 345-362.

Scaglioni M. (2020), “Il virus sullo schermo. Il “sismografo” televisivo e la mediazione della crisi”, in Sala M., Scaglioni M. (a cura di), L’altro virus. comunicazione e disinformazione al tempo del covid-19, Milano: Vita & Pensiero, pp. 17-29.

Sharma S. (2012), “Black Twitter? Racial Hashtags, Networks and Contagion”, New Formations, 78: 46-64.

Scialoja A. (2020), “Parla il sociologo. Edgar Morin: «Per l’uomo è tempo di ritrovare se stesso»”, Retrieved April 17, 2020 (https://www.avvenire.it).

Steinbach M., G. Karypis, and V. Kumar (2000), “A comparison of document clustering techniques”, KDD workshop on text mining, 400: 525–526.

Tate R. (2009), Twitter’s new prompt: A linguist weighs in. Gawker. Retrieved January 18, 2021

(http://gawker.com/5408768/).

Tavoschi L., F. Quattrone, E. D’Andrea, P. Ducange, M. Vabanesi, F. Marcelloni, and P.L. Lopalco (2020), “Twitter as a sentinel tool to monitor public opinion on vaccination: an opinion mining analysis from September 2016 to August 2017 in Italy”, Human Vaccines & Immunotherapeutics, 16(5): 1062–1069.

Twitter (2012), Twitter turns six. Retrieved January 18, 2021 (http://blog.twitter.com/2012/03/twitter-turns-six.html).

Weller K., A. Bruns, J. Burgess, M. Mahrt, and C. Puschmann (eds. 2014a), Twitter and society, New York: Peter Lang.

Weller K., A. Bruns, J. Burgess, M. Mahrt, and C. Puschmann (2014b), “Twitter and Society: An Introduction”, in K. Weller, A. Bruns, J.

Burgess, M. Mahrt, and C. Puschmann (eds.), Twitter and society, New York, Peter Lang, pp. ix-xxvi.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.