A premium structure for a pandemic insurance policy
Abstract
The risk analysis of the proposed policy involves quantifying benefit volatility, establishing a specified confidence level, and conducting threshold analysis using Markov's Inequality to determine the probability that benefits exceed a certain value. Additionally, we discuss the insurer's decision to customize the policy "prior" by applying a uniform premium to the entire population before applying a safety loading. Numerical applications are explored using weekly reports on the COVID-19 epidemic from the Istituto Superiore della Sanità (ISS).
References
Cantelli, F. P. (1929). Sui confini della probabilit`a. In Atti del Congresso Internazionale
dei Matematici: Bologna dal 3 al 10 settembre 1928, pages 47–60.
Christofides, S. (1998). Risk pricing in financial transactions. In Proceedings of the
General Insurance Conference, volume 2.
Fan, V. Y., Jamison, D. T., and Summers, L. H. (2018). Pandemic risk: How large are
the expected losses? Bulletin of the World Health Organization, 96(2):129–134.
Gemmi, F., Bachini, L., and Forni, S. (2021). Ricoveri per covid-19 in toscana, aggior-
namento terza ondata. Retrieved from http://www.ars.toscana.it/2-articoli/
-ricoveri-per-COVID19-in-toscana-aggiornamento-terza-ondata.html.
Greenwood, P. E. and Gordillo, L. F. (2009). Modeling of stochastic epidemics. In Math-
ematical and statistical estimation approaches in epidemiology, pages 31–52. Springer,
.
He, S., Tang, S., and Rong, L. (2020). A discrete stochastic model of the covid19
outbreak: Forecast and control. Math. Biosci. Eng, 17(4):2792–2804.
International Actuarial Association (1998). Risk pricing in financial transactions.
Istituto Superiore di Sanit`a (ISS) (2022). Aggiornamenti sul coronavirus.
www.epicentro.iss.it/coronavirus/aggiornamenti.
Jonas, O. B. (2013). Pandemic risk.
Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical
theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing
papers of a mathematical and physical character, 115(772):700–721.
Lefevre, C., Picard, P., and Simon, M. (2017). Epidemic risk and insurance coverage.
Journal of Applied Probability, 54(1):286–303.
Levantesi, S. and Piscopo, G. (2020). The role of insurance in handling the covid19
impact on business and society. Journal of Applied Management and Investment.
Levantesi, S. and Piscopo, G. (2021). Covid19 crisis and resilience:
Challenges for the insurance sector. Advances in Management and Applied Economics.
Markov, A. A. (1954). Theory of algorithms. Springer, .
OECD (2020). Insurance coverage and covid 19. OECD Policy Responses to Coronavirus
(Covid 19).
Ogasawara, H. (2020). Some improvements on markov’s theorem with extensions. The
American Statistician, 74(3):218–225.
Pearson, K. (1919). On generalised tchebycheff theorems in the mathematical theory of
statistics. Biometrika, 12(3):284–296.
Pitacco, E. (2000). Elementi di Matematica Attuariale. Lint Editoriale, Trieste.
Rothschild, M. and Stiglitz, J. (1976). Equilibrium in competitive insurance markets: An
essay on the economics of imperfect information. The Quarterly Journal of Economics,
(4):629–649.
Trock, S. C., Burke, S. A., and Cox, N. J. (2015). Development of framework for assessing
influenza virus pandemic risk. Emerging Infectious Diseases, 21(8):1372–1378.
Wardman, J. K. (2020). Recalibrating pandemic risk leadership: Thirteen crisis ready
strategies for covid-19. Journal of Risk Research, 23(7-8):1092–1120.
Wister, A. and Speechley, M. (2020). Covid-19: Pandemic risk, resilience and possi-
bilities for aging research. Canadian Journal on Aging / La Revue Canadienne Du
Vieillissement, 39(3):344–347.
Zhou, Y., Ma, Z., and Brauer, F. (2004). A discrete epidemic model for sars transmission
and control in china. Mathematical and Computer Modelling, 40(13):1491–1506.
Full Text: pdf