E-Bayesian ‎estimation‎ ‎of traffic intensity ‎in ‎a‎‎ ‎M/M/‎1‎ ‎ ‎system ‎using ‎expected posterior ‎risk ‎criteria


Abstract


The ‎strategy‎ ‎of ‎E-Bayesian ‎estimation ‎for‎ ‎traffic ‎intensity ‎in a‎ ‎queuing ‎‎‎M/M/1‎‎ ‎system ‎is developed ‎under different loss functions‎.‎ The ‎Bayesian ‎and ‎E-Bayesian ‎estimators‎ ‎are ‎derived‎ ‎using a ‎power‎ ‎prior ‎density ‎of‎ ‎traffic ‎intensity ‎and a‎ ‎robust ‎prior ‎for ‎the ‎hyperparameter ‎of ‎the ‎prior ‎distribution. ‎The ‎posterior ‎risk ‎of ‎Bayesian ‎estimators ‎and ‎the ‎associated ‎expected ‎posterior ‎risks ‎‎of ‎traffic ‎intensity ‎are ‎computed ‎for ‎comarision ‎purposes. A ‎M‎onte ‎Carlo ‎simulation ‎is ‎conducted‎ ‎for ‎performace ‎analysis ‎of ‎the ‎proposed ‎E-Bayesian ‎estimators ‎using ‎expected ‎posterior ‎criteria.‎‎‎


Keywords: ‎M/M/‎1‎‎ system; ‎‎R‎obust Bayesian ‎estimation; ‎Traffic ‎intensity.‎‎‎

References


Armero‎, ‎C.‎, ‎Bayarri‎, ‎M‎. ‎J‎. ‎(1994)‎. ‎Bayesian prediction in M/M/1‎

‎queues‎. ‎Queing ‎Systems,‎‎‎‎ 15‎:‎‎‎401-417‎.

‎ Berger‎, ‎J.O‎. ‎(1985)‎. ‎In Robustness of Bayesian Analysis‎, ‎The robust Bayesian viewpoint (with discussion)‎, ‎North Holland‎, ‎Amsterdam‎.

‎Chandrasekhara‎, ‎P.‎, ‎Vaidyanathanb‎, ‎P‎. ‎S.‎, ‎Durairajana‎, ‎T‎. ‎M.‎, ‎and Yadavalli‎, ‎V‎. ‎S‎. ‎S‎. ‎(2021)‎. ‎Classical and Bayes estimation in the $M/D/1$ queueing system‎. ‎‎‎‎Communications in Statistics-Theory and ‎Methods‎ ‎, ‎1-11‎, ‎doi:10.1080/03610926.2020.1734833‎.

Chowdhury‎, ‎S.‎, ‎and S‎. ‎S‎. ‎Maiti‎. ‎(2014)‎. ‎Bayes estimation of traffic intensity in an $M/Er/1$ queueing‎

‎model‎. ‎Special Issue on Recent Statistical Methodologies and ‎Applications‎‎ ‎, ‎1:‎‎99-106‎.

Clarke‎, ‎A‎. ‎B‎. ‎(1957)‎. ‎Maximum likelihood estimates in a simple queue‎. ‎‎‎Annals ‎of‎ Mathematical ‎Statistics‎‎,‎ ‎28:‎‎1036-1040‎.

Dey‎, ‎S‎. ‎(2008)‎. ‎A ‎n‎ote ‎o‎n Bayesian ‎e‎stimation of the ‎t‎raff‎ic ‎i‎ntensity in M/M/1 ‎q‎ueue and ‎q‎ueue ‎c‎haracteristics ‎q‎uadratic ‎l‎oss ‎f‎unction‎. Data Science ‎Journal, ‎7:‎‎148-154‎.

‎ Han M‎. ‎(1997)‎. ‎The structure of hierarchical prior distribution and its applications‎. Chinees ‎Operational‎ Research and ‎Management ‎Sciences‎‎‎,‎‎ ‎ 6(3)‎:‎‎‎31-40‎.‎‎

‎ ‎Han, M. (2019). ‎E-‎­Bayesian estimations of parameter and its evaluation standard: E­MSE (expected mean square error) under different loss functions, ‎‎‎Communi­cations in Statistics ­ Simulation and ‎Computation‎‎, ‎‎50(1)‎:‎‎1-18.‎

Kiapour‎, ‎A‎. ‎(2022)‎. ‎Bayesian estimation of the expected queue length‎

‎of a system M/M/1 with certain and uncertain priors‎. Communications in Statistics-Theory and Methods‎‎‎, ‎51(15)‎:‎‎‎5310-5317‎.

Kiapour‎, ‎A.‎, ‎and M‎. ‎Naghizadeh Qomi‎. ‎(2019)‎. ‎Shrinkage and Bayesian shrinkage estimation of‎ ‎the expected length of a M/M/1 queue system‎. Journal of Statistical Research of ‎Iran‎‎, ‎15(2)‎:‎‎‎301-316‎.

Mukherjee‎, ‎S‎. ‎P.‎, ‎Chowdhury‎, ‎S‎. ‎(2005)‎. ‎Bayesian estimation of traffic intensity‎. ‎‎IAPQR ‎Transactions‎,‎‎ ‎30‎:‎‎‎89-100‎.

Miaomiao Yu‎, ‎Jianfang Tang and Yinghui Tang‎. ‎(2021)‎. ‎UMVUEs and Bayes estimators for various performance measures on a Poisson queue with discouraged arrivals‎. Communications in Statistics-Theory and ‎Methods‎ ‎, ‎52(13)‎:‎‎4468-4483.‎

‎‎

‎Quinino, ‎R. ‎C.,‎ ‎and ‎Cruz,‎ F. R. B. (2017). Bayesian sample sizes in an M/M/1 queueing systems. ‎The International Journal of Advanced Manufacturing ‎Technology‎,‎ ‎ ‎ ‎8‎8‎:‎995‎-‎1002‎.‎

Ren‎, ‎H‎. ‎and Wang‎, ‎G‎. ‎(2012)‎. ‎Bayes ‎e‎stimation of ‎t‎raffic ‎i‎ntensity in $M/M/1$ ‎q‎ueue under a‎

‎p‎recautionary ‎l‎oss ‎f‎unction‎. ‎‎Procedia ‎Engineering‎‎,‎ ‎ ‎ 29‎:‎‎‎3646-3650‎.

‎Singh‎‎, ‎S‎. ‎K‎. ‎and Acharya‎, ‎S‎. ‎K‎. ‎(2019)‎. ‎Equivalence between Bayes and the maximum likelihood estimator in M/M/1 queue‎. Communications in ‎Statistics-‎‎Theory and ‎Methods‎‎ ‎, ‎48‎:‎‎4780-4793‎.

Sharma‎, ‎K‎. ‎K‎. ‎and Kumar‎, ‎V‎. ‎(1999)‎. ‎Inference on M/M/1:(infty:FIFO) queue systems‎. ‎Opsearch‎‎,‎‎ ‎36‎:‎‎‎26-34‎.

‎ Srinivas‎, ‎V.‎, ‎and ‎Kale, ‎‎B‎. ‎K‎. ‎(2016)‎. ‎ML and UMVU estimation in the $M/D/1$ queueing system‎. Communications in ‎Statistics-‎Theory and ‎Methods‎ ‎, ‎45(19)‎:‎‎5826–5834‎. ‎‎

Srinivas‎, ‎V.‎, ‎Rao‎, ‎S‎. ‎S.‎, ‎and Kale‎, ‎B‎. ‎K‎. ‎(2011)‎. ‎Estimation of Measures in $M/M/1$ ‎Queue. Communications in Statistics-Theory and ‎Methods,‎‎‎‎ ‎‎‎ 40‎:‎‎‎3327-3336‎.

Yadavalli‎, ‎V‎. ‎S‎. ‎S.‎, ‎Vaidyanathan‎, ‎‎V‎. ‎S., ‎and ‎Chandrasekhar, P‎.‎‎ ‎(2017)‎. ‎Classical and Bayes estimation of modified traffic intensity of a queueing system with balking‎. ‎‎Annals of Management ‎Science‎‎‎ , ‎5(2)‎:‎ ‎1–16‎. ‎doi:10.24048/ams5.no2.2017-1‎.‎


Full Text: pdf
کاغذ a4

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.