Using t-distribution for Robust ‎Hierarchical Bayesian Small Area Estimation under Measurement Error in Covariates


Abstract


Small area estimation often suffers from imprecise direct estimators due to small sample sizes. One method for giving direct estimators more strength is to use models.‎ Models ‎employ area effects and ‎include supplementary information  from extra sources as covariates to increase the accuracy of direct estimators. ‎The valid covariates are the basis of ‎the ‎small ‎area ‎estimation.‎ Therefore, measurement error (ME) in covariates can produce contradictory results, i.e., even reduce the precision of direct estimators. The Gaussian distribution with known variance is generally apply as a distribution of ME. ‏‎ ‎However‎, ‎in real problem, ‎‎there might be situations in which the normality assumption fo MEs does not hold‎. In addition, the assumption of known ME variance is restricted. To address these issues and obtain a more robust model, ‎‎we propose modeling ME using a t-distribution with known and unknown degrees of freedom. Model parameters are estimated using a fully Bayesian framework based on MCMC methods. We validate our proposed model using simulated data and apply it to well-known crop data and the cost and income of households living in Kurdistan province of ‎Iran.‎

DOI Code: 10.1285/i20705948v16n3p722

Keywords: ‎Small area estimation‎, MCMC methods, ‎Area-level model‎, ‎Measurement error‎, ‎Hierarchical Bayesian modelling.‎

References


begin{thebibliography}{}‎

‎bibitem[Arima {em et~al.}(2015)]{Arima:Datta:Liseo:2015}‎

‎Arima‎, ‎S.‎, ‎Datta‎, ‎G.S‎. ‎and Liseo‎, ‎B‎. ‎(2015)‎. ‎Bayesian estimators for small area models when auxiliary information is measured with error‎.

‎{em Scandinavian Journal of Statistics}‎, ‎{bf 42}(2)‎, ‎518--529‎.

‎bibitem[Akinc and Vandebroek (2018)]{Akinc:Vandebroek:2018}‎

‎Akinc‎, ‎D‎. ‎and Vandebroek‎, ‎M‎. ‎(2018)‎. ‎Bayesian estimation of mixed logit models‎: ‎Selecting an appropriate prior for the covariance matrix‎.

‎{em Journal of choice modelling}‎, ‎{bf 29}‎, ‎133--151‎.

‎bibitem[Battese {em et~al.} (1998)]{Battese:Harter:Fuller:1998}‎

‎Battese‎, ‎G.E.‎, ‎Harter‎, ‎R.M‎. ‎and Fuller‎, ‎W.A‎. ‎(1988)‎. ‎An error components model for prediction of county crop areas using survey and satellite data‎.

‎{em Journal of the American Statistical Association}‎, ‎{bf 83}‎, ‎28--36‎.

‎bibitem[Bell and Huang (2006)]{Bell:Huang:2006}‎

‎Bell‎, ‎W.R‎. ‎and Huang‎, ‎E.T‎. ‎(2006)‎. ‎Using the $t$-distribution to deal with outliers in small area estimation‎.

‎{em In Proceedings of Statistics Canada Symposium.}‎

‎bibitem[Chakraborty {em et~al.} (2017)]{Chakraborty:Datta:Mandal:2017}‎

‎Chakraborty‎, ‎A.‎, ‎Datta‎, ‎G.S‎. ‎and Mandal‎, ‎A‎. ‎(1988)‎. ‎Robust hierarchical Bayes small area estimation for nested error regression model‎.

‎{em arXiv preprint arXiv:1702.05832.}‎

‎bibitem[Fay and Herriot (1979)]{Fay:Herriot:1979}‎

‎Fay‎, ‎M.P‎. ‎and Herriot‎, ‎R.A‎. ‎(1979)‎. ‎Estimates of income for small places‎: ‎an application of‎

‎James-Stein procedures to census data‎.

‎{em Journal of the American Statistical Association}‎, ‎{bf 74}(366a)‎, ‎269--277‎.

‎bibitem[Ghosh {em et~al.}(2018)]{Ghosh:Myung:Moura:2018}‎

Ghosh, M., Myung, J. and Moura, F. A. (2018). Robust Bayesian small area estimation.

‎{em Survey Methodology}‎, ‎{bf 44}(1)‎, 101--116‎.

‎‎

‎bibitem[Goo and Kim (2013)]{Goo:Kim:2013}‎

‎Goo‎, ‎Y.M‎. ‎and Kim‎, ‎D.H‎. ‎(2013)‎. ‎Bayesian small area estimations with measurement errors‎.

‎{em Journal of the Korean Data $&$ Information Science Society}‎, ‎{bf 24}(4)‎, ‎885--895‎.

bibitem[Hariyanto {em et~al.}(2020)]{Hariyanto:Notodiputro:Kurnia:Sadik:2020}‎

Hariyanto, S., Notodiputro, K. A., Kurnia, A. and Sadik (2020). Small Area Estimation with Measurement Error in t Distributed Covariate Variable.‎

‎{em International Journal of Advanced Science and Technology}‎, ‎{bf 10}(4)‎, 1536--1542‎.‎

‎bibitem[Molina and Rao (2015)]{MolinaRao:2015}‎

‎Molina‎, ‎I‎. ‎and J.C‎. ‎Rao (2015)‎.

‎newblock {em {Small Area Estimation}}‎.

‎newblock John Wiley $&$ Sons‎.

‎bibitem[Sinha and Rao (2009)]{Sinha:Rao:2009}‎

‎Sinha‎, ‎S.K‎. ‎and Rao‎, ‎J.N.K‎. ‎(2009)‎. ‎Robust small area estimation‎.

‎newblock {em Canadian Journal of Statistics}‎ , ‎{bf 37}(3)‎, ‎381--399‎.

‎bibitem[Spiegelhalter {em et~al.}(2002)]{Spiegelhalter:Best:Carlin:Van:2002}‎

‎Spiegelhalter‎, ‎D.J.‎, ‎Best‎, ‎N.G.‎, ‎Carlin‎, ‎B.P‎. ‎and Van Der Linde‎, ‎A‎. ‎(2002)‎. ‎Bayesian measures of model complexity and fit‎.

‎{em Journal of the Royal Statistical Society‎: ‎Series B‎

‎(Statistical Methodology)}‎, ‎{bf 64}(4)‎, ‎583--639‎.

bibitem[You and Chapman (2006)]{You:Chapman:2006}‎

You, ‎Y‎. ‎and Chapman‎, ‎B‎. ‎(2006)‎. ‎Small area estimation using area-level models and estimated sampling variances‎.

‎{em Survey Methodology}‎, ‎{bf 1}(32)‎, ‎97--103‎.

‎bibitem[Ybarra and Lohr (2008)]{Ybarra:Lohr:2008}‎

‎Ybarra‎, ‎L.M‎. ‎and Lohr‎, ‎S.L‎. ‎(2008)‎. ‎Small area estimation when auxiliary information is measured with error‎.

‎{em Biometrika}‎, ‎{bf 95}(4)‎, ‎919--931‎.

‎bibitem[Zarei {em et~al.}(2021)]{shaho:serena:Giovanna2020}‎

‎Zarei‎, ‎S‎. ‎and Arima‎, ‎S‎. ‎and Giovanna‎, ‎J.L‎. ‎(2021)‎. ‎A new robust Bayesian small area estimation via $a$-stable model for estimating the proportion of athletic students in California‎.

‎{em Biometrical Journal}‎, ‎{bf 63}(6)‎, ‎1309--1324‎

‎end{thebibliography}‎


Full Text: pdf
کاغذ a4

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.