A Permutation Test for Comparing Multiple Measures of Center in Three-Dimensional Rotation Data


Abstract


Data in the form of three-dimensional rotations arise in various fields, yet statistical techniques for modeling such data receive far less focus in the area of directional statistics than circular and spherical data. In this paper, the focus is on comparison of mean or central matrices for multiple groups of three-dimensional rotations. A permutation test is developed by using the fundamental ideas behind a traditional Analysis of Variance and a simulation study is used to investigate the power of the permutation test under various conditions. The test is then used on a biomechanics data set to compare movement around the calcaneocuboid joint for a human, chimpanzee, and baboon.

DOI Code: 10.1285/i20705948v16n3p711

Keywords: Directional data; Three-Dimensional Rotations; Permutation Test; ANOVA; Misorientation Angle; Biomechanics

References


@article{arnold2018,

title={Statistics of Ambiguous Rotations},

author={Arnold, R and Jupp, P and Schaeben, H},

journal={Journal of Multivariate Analysis},

volume={165},

pages={73--85},

year={2018}

}

@article{bero2015,

title={A Permutation Test for Three-Dimensional Rotation Data},

author={Bero, Daniel and Bingham, Melissa},

journal={Involve},

volume={8},

pages={735--744},

year={2015}

}

@article{bingham2015,

title={Quantifying Spread in Three-Dimensional Rotation Data: Comparison of Nonparametric and Parametric Techniques},

author={Bingham, Melissa A},

journal={Journal of Statistical Distributions and Applications},

volume={2},

pages={1--8},

year={2015}

}

@article{bingham2009,

title={Modeling and Inference for Measured Crystal Orientations and a Tractable Class of Symmetric Distributions for Rotations in Three Dimensions},

author={Bingham, Melissa A and Nordman, Daniel J and Vardeman, Stephen B},

journal={Journal of the American Statistical Association},

volume={104},

pages={1385--1397},

year={2009}

}

@article{downs1972,

title={Orientation Statistics},

author={Downs, T D},

journal={Biometrika},

volume={59},

pages={665--676},

year={1972}

}

@article{du2015,

title={Bayesian Inference for a New Class of Distributions on Equivalence Classes of 3-D Orientations With Applications to Materials Science},

author={Du, C and Nordman, Daniel and Vardeman, Stephen B},

journal={Technometrics},

volume={58},

pages={214--224},

year={2015}

}

@article{figueiredo2017,

title={Bootstrap and Permutation Tests in ANOVA for Directional Data},

author={Figueiredo, A},

journal={Computational Statistics},

volume={32},

pages={1213--1240},

year={2017}

}

@article{haddou2010,

title={A Nonlinear Mixed Effects Directional Model for the Estimation of the Rotation Axes of the Human Ankle},

author={Haddou, M and Rivest, L-P and Pierrynowski, M},

journal={Annals of Applied Statistics},

volume={4},

pages={1892--1912},

year={2010}

}

@article{jupp1979,

title={Maximum Likelihood Estimators for the Matrix Von Mises-Fisher and Bingham Distributions},

author={Jupp, P E and Mardia, K V},

journal={The Annals of Statistics},

volume={7},

pages={599--606},

year={1979}

}

@article{khatri1977,

title={The Von Mises-Fisher Matrix Distribution in Orientation Statistics},

author={Khatri, C G and Mardia, K V},

journal={Journal of the Royal Statistical Society Series B},

volume={39},

pages={95--106},

year={1977}

}

@article{leon2006,

title={A Statistical Model for Random Rotations},

author={Le'on, C A and Mass'e, J-C and Rivest, L-P},

journal={Journal of Multivariate Analysis},

volume={97},

pages={412--430},

year={2006}

}

@article{ley2017,

title={Efficient ANOVA for Directional Data},

author={Ley, C and Swan, Y and Verdebout, T},

journal={Annals of the Institute of Statistical Mathematics},

volume={69},

pages={39--62},

year={2017}

}

@book{mardia2000,

title={Directional Statistics},

author={Mardia, K V and Jupp, P E},

year={2000},

publisher={John Wiley and Sons}

}

@article{oualkacha2009,

title={A New Statistical Model for Random Unit Vectors},

author={Oualkacha, K and Rivest, L-P},

journal={Journal of Multivariate Analysis},

volume={100},

pages={70--80},

year={2009}

}

@book{pesarin2010,

title={Permutation Tests for Complex Data: Theory, Applications and Software},

author={Pesarin, F and Salmaso, L},

year={2010},

publisher={John Wiley and Sons}

}

@article{pierrynowski2009,

title={Oppugning the Assumptions of Spatial Averaging of Segment and Joint Orientations},

author={Pierrynowski, M R and Ball, K A},

journal={Journal of Biomechanics},

volume={42},

pages={375--378},

year={2009}

}

@article{prentice1986,

title={Orientation Statistics without Parametric Assumptions},

author={Prentice, M J},

journal={Journal of the Royal Statistical Society Series B},

volume={48},

pages={214--222},

year={1986}

}

@article{rancourt2000,

journal={Journal of the Royal Statistical Society},

author={Rancourt, D and Rivest, L-P and Asselin, J},

title={Using Orientation Statistics to Investigate Variations in Human Kinematics},

volume={49},

pages={81--94},

year={2000}

}

@book{randle2003,

title={Microtexture Determination and Its Applications},

author={Randle, V},

year={2003},

publisher={London: Maney for the Institute of Materials, Minerals and Mining}

}

@article{rivest2008,

title={A Directional Model for the Estimation of the Rotation Axes of the Ankle Joint},

author={Rivest, L-P and Baillargeon, S and Pierrynowski, M},

journal={Journal of the American Statistical Association},

volume={103},

pages={1060--1069},

year={2008}

}

@article{sei2013,

title={Properties and Applications of the Fisher Distribution on the Rotation Group},

author={Sei, T and Shibata, H and Takemura, A and Ohara, K and Takayama, N},

journal={Journal of Multivariate Analysis},

volume={116},

pages={440--455},

year={2013}

}

@article{stanfill2015,

title={Nonparametric Confidence Regions for the Central Orientation of Random Rotations},

author={Stanfill, B and Genschel, Ulrike and Hofmann, Heike and Nordman, Daniel},

journal={Journal of Multivariate Analysis},

volume={135},

pages={106--116},

year={2015}

}

@article{wellner1979,

title={Permutation Tests for Directional Data},

author={Wellner, J A},

journal={Annals of Statistics},

volume={7},

pages={929--943},

year={1979}

}


Full Text: pdf
کاغذ a4

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.