Finite Iterative Method Based Algorithm To Estimate Latent Variables In Partial Least Squares Path Modelling For Mode A


Abstract


The present paper introduces a new algorithm in partial least squares path modelling to compute the scores of latent variables when Mode A is considered for all blocks. The proposed algorithm estimates the so-called weight vectors by minimizing the distance between two correlation matrices by considering each outer model as being a recursive path analysis model. Numerical studies and empirical simulations illustrating the advantages of the proposed algorithm are given.


Keywords: Partial Least Squares Path Modelling; Reflective Path Analysis Model, Finite Iterative Method; Unweighted Least Squares.

References


Laura Ann Hildreth. (2013). Residual analysis for structural equation modeling. Iowa State University.

Betzin, J., Temme, D. (2010). Advances in structural equation modeling—the 2009 meeting of the working group SEM. AStA Adv Stat Anal 94, 113–116. https://doi.org/10.1007/s10182-010-0133-2

Bollen, K. A. (1989). Structural equations with LV. New York: Wiley.

Jose Benitez, Henseler, Ana Castillo Florian Schuberth. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management.

Giorgio Russolillo. (2009). Partial Least Squares Methods for Non-Metric Data.

Takane, Y., Hwang, H. (2018). Comparisons among several consistent estimators of structural equation models. Behaviormetrika.

Vinzi. E, Wynne W. Chin, Henseler. J, Wand. H. (2010). Handbook of Partial Least Squares: Concepts, Methods and Applications. Springer Verlag. Heidelberg.

Joseph F. Hair, G. Tomas M, Christian M. Ringle, Marko. S. (2017). A Primer on Partial Least squares Structural Equation Modeling (PLS-SEM). 2nd edn. Sage. Thousand Oaks, CA.

Hwang, H., Sarstedt, M., Cheah, J.H. et al. (2020). A concept analysis of methodological research on composite-based structural equation modeling: bridging PLSPM and GSCA. Behaviormetrika.

H. Latan, R. Noonan. (2017). Partial Least Squares Path Modeling: Basic Concepts, Methodological Issues and Applications. Springer International Publishing.

Hanafi.M,ElHadri.Z,Sahli,A,Dolce.P.(2022).Overcoming convergence problems in PLS path modelling. Computational Statistics.

Wold. H. (1966). Non linear Estimation by Iterative Least Squares procedure. IN: Research Papers in Statistics, Festschrift for J. Neyman, Wiley, London, New York.

J. Hair, M. Sarstedt, T. Pieper, C. Ringle. (1966). The use of partial least squares structural equation modeling in Strategic Management research: a review of past practices and recommendations for future applications Long Range Plann.

J. Hair, M. Sarstedt, C. Ringle, J. Mena. (2012). An assessment of the use of partial least squares structural equation modeling in Marketing research J. Acad. Mark. Sci.

D. Peng, F. Lai. (2012). Using partial least squares in Operations Management research: a practical guideline and summary of past research J. Oper. Manage.

N. Avkiran, C. Ringle. (2018). Partial Least Squares Structural Equation Modeling. Springer Cham. Switzerland.

Sanchez. G. (2013). PLS Path Modeling with R. Trowchez Editions. http://www.gastonsanchez.com/PLS Path Modeling with R.

Fabbricatore, R., Iannario, M., Romano, R. et al. (2021). Component-based struc- tural equation modeling for the assessment of psycho-social aspects and performance of athletes. AStA Adv Stat Anal. https://doi.org/10.1007/s10182-021-00417-5

Mayrink, V.D., Panaro, R.V. Costa, M.A. (2021). Structural equation model- ing with time dependence: an application comparing Brazilian energy distributors. AStA Adv Stat Anal 105, 353–383. https://doi.org/10.1007/s10182-020-00377-2

Hwang, H., Takane, Y. & Tenenhaus A. (2015). An Alternative Estimation Procedure for Partial Least Squares Path Modeling. Behaviormetrika.

Cho, G., Choi, J.Y. (2020). An empirical comparison of generalized structured component analysis and partial least squares path modeling under variance-based structural equation models. Behaviormetrika.

Fornell C, Larcker DF. (1981). Evaluating structural equation models with unob- servable variables and measurement error. J Market Res.

Henseler. J. (2010). On the convergence of the partial least squares path modeling algorithm. Computational Statistics.

Marco Fattore, Matteo M. Pelagatti, Giorgio Vittadini. (2012). INCONSISTEN- CIES OF THE PLS-PM APPROACH TO STRUCTURAL EQUATION MODELS WITH FORMATIVE-REFLECTIVE SCHEMES. Electronic Journal of Applied Statistical Analysis.

Eboli, L., Forciniti, C., & Mazzulla, G. (2018). Formative and reflective measure- ment models for analysing transit service quality. Public Transport. 10(1), 107–127.

Crocetta, C., Antonucci, L., Cataldo, R. et al. (2021). Higher-Order PLS- PM Approach for Different Types of Constructs. Soc Indic Res 154, 725–754. https://doi.org/10.1007/s11205-020-02563-w

Hanafi. M. (2007). PLS Path Modelling: Computation of latent variables with the estimation Mode B. Computational Statistics.

Tenenhaus. M, Esposito. V, Chatelinc. Y, Carlo. L. (2005). PLS path modeling. Computational Statistics & Data Analysis.

Hanafi. M, Dolce. P, El Hadri. Z. (2020). Generalized properties for Hanafi-Wold’s procedure in partial least squares path modeling. Computational Statistics.

Lohm ̈oller, J. Bernd. (1984). LVPLS 1.6 program manual: latent variables path analysis with partial least-squares estimation. Zentralarchiv fu ̈r Empirische Sozial- forschung. Universit ̈at zu K ̈oln, Cologne.

Soft Modeling. Inc 1992–2002. PLS-Graph Version 3.0. Houston, TX. http://www.plsgraph.com.

Chin. W. (2003). PLS graph 3.0 Soft Modeling Inc, Houston.

Test and Go. (2006). SPAD Version 6.0.0. Paris.

Christian M. Ringle, Wende. S. (2019) SmartPLS 2.0M3. University of Hamburg. Hamburg (2007). http://www.smartpls.de.

Addinsoft XLSTAT. https://www.xlstat.com/en.

El Hadri. Z, Sahli. A. & Hanafi. M. (2022). Simple and fast convergent procedure to estimate recursive path analysis model. Behaviormetrika.

El Hadri .Z, Hanafi. M. (2015). The Finite Iterative Method for calculating the correlation matrix implied by a recursive path model. Electronic Journal of Applied Statistical Analysis.

Kline, R B. (2012). Principles and Practice of Structural Equation Modeling. The Guilford Press.


Full Text: pdf
کاغذ a4 ویزای استارتاپ

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.