New Alternative Methods For Estimation Of Asymmetric Stochastic Volatility Model
Abstract
References
Abramovitz, M., Stegun, N. (1970). Handbook of Mathematical Functions. Dover Publication, New York.
Alzghool, R. (2017a). Estimation for stochastic volatility model: Quasi-likelihood and asymptotic quasi-likelihood approaches. Journal of King Saud University-Science. 29,114-118.
Alzghool, R. (2017b). Parameters estimation for GARCH (p,q) model: QL and AQL approaches. Electronic Journal of Applied Statistical Analysis (EJASA).10, No.1, 180-193.
Alzghool, R. , Al-Zubi, L. M. (2018). Semi-parametric estimation for ARCH models. Alexandria Engineering Journal.57, 367-373.
Alzghool, R. and Lin, Y.-X. (2007). Asymptotic Quasi-Likelihood Based on Kernel Smoothing for Nonlinear and Non-Gaussian State-Space Models. Lecture Notes in Engineering and Computer Science. ICCSDE, London, UK. 926-932.
Alzghool, R., Lin, Y.-X. (2008). Parameters estimation for ssms: Ql and AQL approaches. IAENG International Journal of Applied Mathematics.38, 34-43
Alzghool, R., Lin, Y.-X., Chen, S. X. (2010). Asymptotic Quasi-Likelihood Based on Kernel Smoothing for Multivariate Heteroskedastic Models with Correlation. American Journal of Mathematical and Management Sciences. 30, Issue 12, 147-177.
Alzghool, R., and Lin (2011). Initial Values in Estimation Procedures for State Space Models (SSMs). Proceedings of World Congress on Engineering 2011. Volume I, WCE 2011, July 6-8, 2011, London, UK.
Asai, M., and McAleer, M. (2011). Alternative asymmetric stochastic volatility models. Econometric Reviews. 30, 548-564.
Breidt, F.J. and Carriquiry, A.L. (1996). Improved quasi-maximum likelihood estimation for stochastic volatility models. In: Zellner, A. and Lee, J.S. (Eds.). Modelling and Prediction: Honouring Seymour Geisser. Springer, New York, 228-247.
Chan, Joshua C.C. and Grant, Angelia L.(2015). Modeling Energy Price Dynamics: GARCH versus Stochastic Volatility. Energy Economics. 54, 182-189.
Daouk, H., Ng, D., (2007). Is unlevered firm volatility asymmetric? Working paper. Cornell University.
Davis, R. A. and Rodriguez-Yam, G. (2005). Estimation for State-Space Models: an approximate likelihood approach. Statistica Sinica. 15, 381-406.
Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford, New York.
H¨ardle, W. (1990). Applied Nonparametric Regression. Cambridge, University Press.
Harvey, A.C., Shephard, N. (1996). The estimation of an asymmetric stochastic volatility model for asset returns. J. Bus. Econom. Statist.. 14, 429-434.
Hedye, C. C. (1997). Quasi-likelihood and its Application: a General Approach to Optimal Parameter Estimation. Springer, New York.
Jacquire, E., Polson, N. G. and Rossi, P. E. (1994). Bayesian analysis of stochastic volatility models ( with discussion). J. Bus. Econom. Statist.. 12, 371-417.
Lin, Y.-X. (2000). A new kind of asymptotic quasi-score estimating function, Scandinavian Journal of Statistics. 27,97-109.
Men, Z. McLeish, D. Kolkiewicz, A. and Wirjantoa, T. S. (2017). Comparison of asymmetric stochastic volatility models under different correlation structures. J Appl Stat . 44, 1350-1368.
Men, Z. and Wirjanto, T. S. (2018). A new variant of estimation approach to asymmetric stochastic volatility model. Quantitative Finance and Economics. 2(2), 325-347.
Pinho, F. M., Franco, G. C. and Silva, R. S. (2016). Modeling volatility using state space models with heavy tailed distributions. Mathematics and Computers in Simulation. 119, 108-127.
Sandmann, G. and Koopman, S. J. (1998). Estimation of stochastic volatility models via Monte Carlo maximum likelihood. J. Econometrics. 87, 271-301.
Wang, J. J.(2012). On asymmetric generalised t stochastic volatility Models. Mathematics and Computers in Simulation. 82, 2079-2095.
Full Text: pdf