Inference on Constant Stress Accelerated Life Tests Under Exponentiated Exponential Distribution
Abstract
References
Abdel Ghaly, A. A., Aly, H. and Salah, R. (2016). Dierent estimation methods for
constant stress accelerated life test under the family of the exponentiated distributions. Quality and Reliability Engineering International, 32, 1095-1108.
Anderson, T. W., Darling, D. A. (1952). Asymptotic theory of certain "goodness-of
t criteria" based on stochastic processes. Ann Math Statist., 23, 193-212.
Bagdonavicius, V. and Nikulin, M. (2002). Accelerated Life Models: Modeling and
Statistical Analysis. Chapman & Hall/CRC Press, Boca Raton, Florida.
Bartoluccia, A. A., K. P. Singha, A. D. Bartoluccib, and Baea, S. (1999). Applying
medical survival data to estimate the three-parameter Weibull distribution by the
method of probability-weighted moments. Math. Comput. Simulation, 48, 385-392.
Bhattacharyya, G. K. and Fries, A. (1982). Inverse gaussian regression and accelerated life tests. In Survival Analysis: Proceedings of the Special Topics Meeting.
Institute of Mathematical Statistics: Hayward, California. 101-118.
Bhattacharyya, G. K. and Soejoeti, Z. (1981). Asymptotic normality and eciency
of modied least squares estimators in some accelerated life test models. The Indian
Journal of Statistics, 43, 18-39.
Cheng, R. C. H. and Amin, N. A. K. (1979). Maximum product of spacings estimation with applications to the lognormal distribution. Technical report, Department
of Mathematics, University of Wales.
Cheng, R. C. H. and Amin, N. A. K. (1983). Estimating parameters in continuous
univariate distributions with a shifted origin. J. R. Statist. Soc., B, 45, 394-403.
Cramer, H. (1928). On the composition of elementary errors. Scandinavian Actuarial
Journal, 1, 13-74. doi:10.1080/03461238.1928.10416862.
Dey, S. and Nassar, M. (2019). Classical methods of estimation on constant stress
accelerated life tests under exponentiated Lindley distribution. Journal of Applied
Statistics. doi.org/10.1080/02664763.2019.1661361.
Fan, T. and Yu, C. (2013). Statistical inference on constant stress accelerated life
tests under generalized gamma lifetime distribution. Quality and Reliability Engineering International, 29, 631-638.
Gui, W. and Chen, M. (2016). Parameter estimation and joint condence regionsfor the parameters of the generalized Lindley distribution. Mathematical Problems
in Engineering, http://dx.doi.org/10.1155/2016/7946828.
Haghighi, F. (2014). Optimal design of accelerated life tests for an extension of the
exponential distribution. Reliability Engineering & System Safety.131,251-256.
Han, D. (2015). Time and cost constrained optimal designs of constant-stress and
step-stress accelerated life tests. Reliability Engineering & System Safety. 140, 1-14.
Kim, C. and Bai, D. S. (2002). Analysis of accelerated life test data under two
failure modes. International Journal of Reliability. Quality and Safety Engineering,
, 111-125.
Meeker, W. Q. and Escobar, L. K. (1998). Statistical Methods for Reliability Data.
Wiley, New York.
Nadarajah, S., Bakouch, H. S. and Tahmasbi, R. A. (2011). Generalized Lindley
distribution. Sankhya B, 73, 331-359.
Nassar, M. and Dey, S. (2018). Dierent estimation methods for exponentiated
Rayleigh distribution under constant-stress accelerated life test. Qual Reliab Engng
Int., 1-13. DOI:10.1002/qre.2349.
Nelson, W. B. (2004) Accelerated Testing: Statistical Model. Test Plan and Data
Analysis. Wiley: New York.
Oluyede, B. and Yang, T. (2014). A new class of generalized Lindley distributions
with applications. Journal of Statistical Computation and Simulation, 85, 2072-2100.
Park, J. L., Bae, S. J. (2010). Weighted rank regression with dummy variables for
analyzing ALT data. International Journal of Industrial Engineering, 17, 236-245.
Singh, S. K, Singh, U. and Sharma, V. K. (2013). Expected total test time and
Bayesian estimation for generalized Lindley distribution under progressively TypeII censored sample where removals follow the Beta-binomial probability law. Applied
Mathematics and Computation, 222, 402-419.
Singh, S. K, Singh, U. and Sharma, V. K. (2014). Bayesian estimation and prediction
for the generalized Lindley distribution under asymmetric loss function. Hacettepe
Journal of Mathematics and Statistics, 43, 661-678.
Singh, S. K, Singh, U. and Sharma, V. K. (2016). Estimation and prediction
for Type-I hybrid censored data from generalized Lindley distribution. Journal of
Statistics & Management Systems, 19, 367-396.
Singpurwalla, N. D. (1974). Estimation of the join point in a heteroscedastic regression model arising in accelerated life tests. Communications in Statistics, 3,
-863.
Torabi, H. (2008). A General Method for Estimating and Hypotheses Testing Using
Spacings. Journal of Statistical Theory and Applications, 8, 163-168.
von Mises, R. E. (1928). Wahrscheinlichkeit, Statistik und Wahrheit. Julius
Springer.
Wu, S. and Huang, S. (2017). Planning two or more level constant-stress accelerated life tests with competing risks. Reliability Engineering & System Safety. 158, 1-8.
Zhang, J. P., Wang, R. T. (2009). Reliability life prediction of VFD by constant temperature stress accelerated life tests and maximum likelihood estimation. Journal
of Testing and Evaluation, 37, 316-320.
Zhu, Y., Elsayed, E. (2010). Design of equivalent accelerated life testing plans under
dierent stress applications. Quality Technology and Quantitative Management, 8,
-478.
Full Text: pdf