Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories
Abstract
References
Agresti, A. (1983). A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics and Probability Letters, 1, 313--316.
Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association, 43, 572--574.
Caussinus, H. (1965). Contribution a l'analyse statistique des tableaux de correlation. Annales de la Facult¥'{e des Sciences de l'Universit¥'{e de Toulouse, 29, 77--182.
Fujisawa, K. and Tahata, K. (2018). Asymmetry models based on logit transformations for square contingency tables with ordinal categories. Journal of the Japanese Society of Computational Statistics, 30, 55--64.
McCullagh, P. (1978). A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika, 65, 45--55.
Read, C. B. (1977). Partitioning chi-square in contingency tables: A teaching approach. Communications in Statistics-Theory and Methods, 6, 553--562.
Seiyama, K. Social Stratification and Social Mobility Research Group, Social Stratification and Mobility (SSM95B). SRDQ Office ed., SRDQ: Social Research Database on Questionnaires, 1995. (Available at http://srdq.hus.osaka-u.ac.jp, [27 June, 2019]).
Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification.
Biometrika, 42, 412--416.
Tahata, K. and Tomizawa, S. (2008). Generalized marginal homogeneity model and its relation to marginal equimoments for square contingency tables with ordered categories. Advances in Data Analysis and Classification, 2, 295--311.
Tahata, K. and Tomizawa, S. (2015). Modeling of symmetry for statistical analysis of multiway contingency tables. SUGAKU EXPOSITIONS, 28, 29--47.
Tomizawa, S. (1987). Decompositions for 2-ratios-parameter symmetry model in square contingency tables with ordered categories. Biometrical Journal, 29, 45--55.
Full Text: pdf