Non-existence of smooth rational curves of degree d = 13, 14, 15 con-tained in a general quintic hypersurface of P4 and in some quadric hypersurface
Abstract
Let
be a general quintic hypersurface. We prove that
contains no smooth rational curve
with degree
,
and
.
![W \subset \mathbb {P}^4](http://siba-ese.unile.it/plugins/generic/latexRender/cache/c0ff6e24cf7b99ef6881c2282e8d1afa.png)
![W](http://siba-ese.unile.it/plugins/generic/latexRender/cache/61e9c06ea9a85a5088a499df6458d276.png)
![C\subset \mathbb {P}^4](http://siba-ese.unile.it/plugins/generic/latexRender/cache/5689bc98842b2bab44cbe02c68f05b41.png)
![d\in \{13,14,15\}](http://siba-ese.unile.it/plugins/generic/latexRender/cache/9832fcde0e4a47a7b83d668f0c7e0069.png)
![h^0(\mathcal {I} _C(1)) =0](http://siba-ese.unile.it/plugins/generic/latexRender/cache/8c704f955f91c163f3115a925e6ee3d4.png)
![h^0(\mathcal {I} _C(2)) >0](http://siba-ese.unile.it/plugins/generic/latexRender/cache/0368affe354ce5a350c5f606c8de63c7.png)
DOI Code:
10.1285/i15900932v36n2p77
Keywords:
General quintic $3$-fold; rational curve; Clemens' conjecture
Full Text: PDF