(LB)-spaces and quasi-reflexivity
Abstract
Let
be a sequence of infinite-dimensional Banach spaces. For
being the space
, the following equivalences are shown: 1. Every closed subspace
of
, with the Mackey topology
, is an (LB)-space. 2. Every separated quotient of
\ is locally complete. 3.
is quasi-reflexive,\
. Besides this, the following two properties are seen to be equivalent: 1.
has the Krein-
mulian property. 2.
is reflexive,
.
![(X_n)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/0593c8f84588c06cde68d0fc8b2a3de3.png)
![E](http://siba-ese.unile.it/plugins/generic/latexRender/cache/3a3ea00cfc35332cedf6e5e9a32e94da.png)
![\bigoplus_{n=1}^\infty X_n](http://siba-ese.unile.it/plugins/generic/latexRender/cache/c5d47dbb43be9990b46fe6458eb0fbf4.png)
![Y](http://siba-ese.unile.it/plugins/generic/latexRender/cache/57cec4137b614c87cb4e24a3d003a3e0.png)
![E](http://siba-ese.unile.it/plugins/generic/latexRender/cache/3a3ea00cfc35332cedf6e5e9a32e94da.png)
![\mu(Y,Y')](http://siba-ese.unile.it/plugins/generic/latexRender/cache/b7377d118be14dcade383d72ebc09e16.png)
![E'\ [\mu(E',E)]](http://siba-ese.unile.it/plugins/generic/latexRender/cache/6f075f7e4260c5ac69ffcd6c19ed53f6.png)
![X_n](http://siba-ese.unile.it/plugins/generic/latexRender/cache/db1caf22475de5dbccb7056170df282a.png)
![n\in \mathbb{N}](http://siba-ese.unile.it/plugins/generic/latexRender/cache/1dccde26c15afc273ca5500e1efbb96e.png)
![E'\ [\mu(E',E)]](http://siba-ese.unile.it/plugins/generic/latexRender/cache/6f075f7e4260c5ac69ffcd6c19ed53f6.png)
![\stackrel{\vee}{S}](http://siba-ese.unile.it/plugins/generic/latexRender/cache/63463b64d274d4541534a73bf5b21643.png)
![X_n](http://siba-ese.unile.it/plugins/generic/latexRender/cache/db1caf22475de5dbccb7056170df282a.png)
![n\in \mathbb{N}](http://siba-ese.unile.it/plugins/generic/latexRender/cache/1dccde26c15afc273ca5500e1efbb96e.png)
DOI Code:
10.1285/i15900932v31n1p191
Full Text: PDF