On the domain of a Fleming--Viot-type operator on an
-space with invariant measure
Abstract
We characterize the domain of a Fleming-Viot type operator of the form
:=
on
for
, where
is the corresponding invariant measure. Our approach relies on the characterization of the domain of the one-dimensional Fleming-Viot operator and the Dore-Venni operator sum method.
![L\varphi(x)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/20204f582eae44e80b12dacb4163a624.png)
![\sum_{i=1}^Nx_i(1-x_i)D_{ii}\varphi(x)+\sum_{i=1}^N(\alpha_i(1-x_i)-\alpha_{i+1}x_i)D_i\varphi(x)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/3e736018d406adda4de6be4339d69aa5.png)
![L^p([0,1]^N,\mu)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/2164c583e08758181ad616484bc4622f.png)
![1<p<\infty](http://siba-ese.unile.it/plugins/generic/latexRender/cache/88a75ba350e7897c55ff37511f1a98f9.png)
![\mu](http://siba-ese.unile.it/plugins/generic/latexRender/cache/c9faf6ead2cd2c2187bd943488de1d0a.png)
DOI Code:
10.1285/i15900932v31n1p139
Keywords:
Fleming--Viot process; degenerate elliptic problems; analytic $C_0$-semigroups
Full Text: PDF