Surjective partial differential operators on real analytic functions defined on a halfspace
Abstract
Let
be a partial differential operator with constant coefficients and let
denote the real analytic functions defined on an open set
. Let H be an open halfspace. We show that
is surjective on
if and only if
is surjective on
and
has a hyperfunction elementary solution which is real analytic on H.
![P(D)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/367587dd301c3e9144af5b0824cddb61.png)
![A(ω)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/9a17c4fe4072a2a7ff7193b1009cebbd.png)
![ω ⊂ R<sup>n</sup>](http://siba-ese.unile.it/plugins/generic/latexRender/cache/6fdfc13434f0f7c5ca0deb8f0287f9ba.png)
![P(D)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/367587dd301c3e9144af5b0824cddb61.png)
![A(H)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/1760735ed398ac733ba9c4328cd142aa.png)
![P(D)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/367587dd301c3e9144af5b0824cddb61.png)
![A(R<sup>n</sup>)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/f420a6cc950003a9890a64dbad476e16.png)
![P(D)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/367587dd301c3e9144af5b0824cddb61.png)
DOI Code:
10.1285/i15900932v25n2p39
Keywords:
Partial differential equations; Elementary solutions; Surjectivity on real analytic functions
Classification:
35E20; 35E05; 35A20; 46F15
Full Text: PDF