An extreme example concerning factorization products on the Schwartz space ![𝕾 (R<sup>n</sup>)](http://siba-ese.unile.it/plugins/generic/latexRender/cache/b3870c6116bd324d9cd381caf1951589.png)
Abstract
We construct linear operators S, T mapping the Schwartz space 𝕾 into its dual
, such that any operator
may be obtained as factorization product
. More precisely, given
, there exists a Hilbert space
such that
, the embeddings
and
are continuous,
is dense in
,
, and S has a continuous extension
such that
for all φ ∈ 𝕾.
![𝕾'](http://siba-ese.unile.it/plugins/generic/latexRender/cache/e85984d43c2f563b790086aab811c580.png)
![R ∈ 𝔏(𝕾, 𝕾')](http://siba-ese.unile.it/plugins/generic/latexRender/cache/f34c326a745d938e47ac598f3e6757f7.png)
![S ○ T](http://siba-ese.unile.it/plugins/generic/latexRender/cache/b7bdcdd452ce20066c5000b9496645d9.png)
![R ∈ 𝔏(𝕾, 𝕾')](http://siba-ese.unile.it/plugins/generic/latexRender/cache/f34c326a745d938e47ac598f3e6757f7.png)
![H<sub>R</sub>](http://siba-ese.unile.it/plugins/generic/latexRender/cache/e5ff348675d119bd855002821eccc55a.png)
![𝕾 ⊂ H<sub>R</sub> ⊂ 𝕾'](http://siba-ese.unile.it/plugins/generic/latexRender/cache/de45085b822a21e7a0532b368cbc89e4.png)
![𝕾 ↪ H<sub>R</sub>](http://siba-ese.unile.it/plugins/generic/latexRender/cache/082e6a5658f575dec37b1699cb869ad7.png)
![H<sub>R</sub> ↪ 𝕾'](http://siba-ese.unile.it/plugins/generic/latexRender/cache/1efe1071e48ea83d78ab71f4bb3e594e.png)
![𝕾](http://siba-ese.unile.it/plugins/generic/latexRender/cache/123769bddfbd5f57a383cf39eb7afe9e.png)
![H<sub>R</sub>](http://siba-ese.unile.it/plugins/generic/latexRender/cache/32949748134e5897a154ce720a69ab78.png)
![T(𝕾) ⊂ H<sub>R</sub>](http://siba-ese.unile.it/plugins/generic/latexRender/cache/b2e9dd36eb98c5484d580f84b9ca0ae4.png)
![\widetilde{S} :H<sub>R</sub> → 𝕾'](http://siba-ese.unile.it/plugins/generic/latexRender/cache/dbe6537aa40150e09d63933b7c2959a8.png)
![\widetilde{S}(T φ)=R φ](http://siba-ese.unile.it/plugins/generic/latexRender/cache/563c15b5936cd6b1832801596e03e25e.png)
DOI Code:
10.1285/i15900932v25n2p31
Keywords:
Factorization product; Partial algebra
Classification:
47L60; 47A70; 46F99; 47C99
Full Text: PDF