La representación del género en la era de la Inteligencia Artificial. Hacia una traducción más inclusiva del Español al Italiano


Abstract


In the digital age, AI-generated machine translation has revolutionized the way we interact globally. In this context, gender representation has become a crucial issue at the intersection of language, culture, and technology. However, despite advances, many challenges remain, particularly regarding gender misrepresentation. This study explores how ChatGPT 3.5, when translating textual segments from Spanish to Italian—two typologically similar Romance languages—often perpetuates and, in some cases, exacerbates gender biases. Large Language Models (LLMs), such as neural network-based machine translation systems, typically rely on vast datasets to learn linguistic patterns. However, these datasets can reflect inherent societal gender biases, leading to biased translations. This phenomenon not only has linguistic implications but also cultural and social ones, as it perpetuates gender stereotypes that can influence the perception and understanding of gender roles across different cultures. Moreover, these errors can be particularly problematic in contexts where accuracy and neutrality are essential. Therefore, addressing these challenges is crucial to promote more inclusive and accurate gender representation. This requires a combination of technical and ethical approaches: on the one hand, AI developers must work on gender-sensitive algorithms and carefully select training data to reduce biases; on the other, it is important to foster critical awareness of gender representation in society and promote diversity and inclusion in the design and use of AI-based systems.

Keywords: gender biases; large language models; machine translation; Spanish-Italian translation; gender representation

References


Abeliuk A., Gutiérrez C. 2021, Historia y evolución de la inteligencia artificial, en “Revista Bits de Ciencia” 21, pp. 14-21.

Araabi A., Monz C., Niculae V. 2022, How effective is byte pair encoding for out-of-vocabulary words in neural machine translation?, en “Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas” 1, pp. 117–130. https://aclanthology.org/2022.amta-research.9/#:~:text=Our%20exp eriments%20show%20that%20while,OOV%20words%20are%20translated%20incorrectly (11.07.2024).

Cho W.I., Kim J.W., Kim S.M., Kim N.S. 2019, On measuring gender bias in translation of gender-neutral pronouns, en “Proceedings of the First Workshop on Gender Bias in Natural Language Processing” pp. 173–181. https://aclanthology.org/W19-3824/ (11.07.2024).

Cristianini N. 2024, Machina sapiens. L’algoritmo che ci ha rubato il segreto della conoscenza, Il Mulino, Bologna.

Gao Y., Wang R., Hou F. 2023, How to design translation prompts for ChatGPT: An empirical study. https://arxiv.org/abs/2304.02182 (11.07.2024).

Ghosh S., Caliskan A. 2023, Chatgpt perpetuates gender bias in machine translation and ignores non-gendered pronouns: Findings across bengali and five other low-resource languages, en “Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society”, pp. 901-912.

Grijelmo Á. 2019, Propuesta de acuerdo sobre el lenguaje inclusivo, Taurus, Barcelona.

Hendy A., Abdelrehim M., Sharaf A., Raunak V., Gabr M., Matsushita H., Awadalla H.H. 2023, How good are gpt models at machine translation? a comprehensive evaluation. https://arxiv.org/abs/2302.09210 (11.07.2024).

Lu H., Huang H., Zhang D., Yang H., Lam W., Wei F. 2023, Chain-of-dictionary prompting elicits translation in large language models. https://arxiv.org/abs/2305.06575 (11.07.2024).

McCulloch W.S., Pitts W. 1943, A logical calculus of the ideas immanent in nervous activity, en “The bulletin of mathematical biophysics” 5, pp. 115-133.

Minervini R. 2021, La traducción automática del género (español-italiano): análisis de ejemplos traducidos con DeepL y Google Traductor, en “Rivista Internazionale di Tecnica della Traduzione” 23, pp. 105-127.

Minsky M., Papert S. 1969, An introduction to computational geometry, en “Cambridge tiass., HIT” 479 [480], p. 104.

Mohamed S.A., Elsayed A.A., Hassan Y.F., Abdou M. 2021, Neural machine translation: past, present, and future, en “Neural Computing and Applications” 33, pp. 15919-15931.

Monti J. 2017, Questioni di genere e traduzione automatica, en “Al femminile. Scritti linguistici in onore di Cristina Vallini”, Firenze, Franco Cesati Editore, pp. 411-431.

Monti J. 2019, Dalla Zairja alla traduzione automatica: riflessioni sulla traduzione nell’era digitale, Paolo Loffredo Editore Srl., Napoli.

Peng K., Ding L., Zhong Q., Shen L., Liu X., Zhang M., Tao D. 2023, Towards making the most of chatgpt for machine translation. https://arxiv.org/abs/2303.13780 (11.07.2024).

Pérez-Ortiz J.A, Forcada M.L., Sánchez-Martínez F. 2022, How neural machine translation work, en “Machine translation for everyone: Empowering users in the age of artificial intelligence” 18, pp. 141-164.

Rescigno A.A., Vanmassenhove E., Monti J., Way A. 2020, A Case Study of Natural Gender Phenomena in Translation-A Comparison of Google Translate, Bing Microsoft Translator and DeepL for English to Italian, French and Spanish, en “CEUR Workshop Proceedings. AILC-Associazione Italiana di Linguistica Computazionale”, pp. 359-364.

Savoldi B., Gaido M., Bentivogli L., Negri M., Turchi M. 2021, Gender bias in machine translation, en “Transactions of the Association for Computational Linguistics” 9, pp. 845-874.

Stahlberg F. 2020, Neural machine translation: A review, en “Journal of Artificial Intelligence Research” 69, pp. 343-418.

Teigens V., Skalfist P., Mikelsten D. 2020, Inteligencia artificial: la cuarta revolución industrial, Cambridge Stanford Books, [s.l.].

Torres Salinas D., Arroyo Machado W. 2023, Manual de ChatGPT: Aplicaciones en investigación y educación universitaria, InfluScience Ediciones, Granada.

Vanmassenhove E., Hardmeier C., Way A. 2019, Getting gender right in neural machine translation, en “Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing”, pp. 3003–3008. https://aclanthology.org/D18-1334/ (11.07.2024).

Vanmassenhove E. 2024, 9 Gender Bias in Machine Translation and the Era of Large Language Models, en “Gendered Technology in Translation and Interpreting: Centering Rights in the Development of Language Technology” 225. https://arxiv.org/abs/2401.10016 (11.07.2024).


Full Text: PDF

Refbacks

  • There are currently no refbacks.
کاغذ a4 ویزای استارتاپ

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.