Discorso d’odio e lessico connotato. Un’applicazione del modello VAD al corpus HaSpeeDe


Abstract


The lexicon of natural languages includes both connoted and neutral terms. Connoted terms express the speaker’s attitude towards the referent of the term. By contrast, neutral terms do not express any such attitude. Connotation can be positive or negative. Hate speech (HS) is understood as any message that expresses contempt or hatred towards an individual or a target group. Hence, a quite natural hypothesis would be that HS contains a high number of negatively connoted terms. Our work aims at verifying this hypothesis. To do this, we use the model developed by Montefinese et al. (2014), which classifies the affective connotation of 1121 Italian words based on three different parameters: valence, arousal, and dominance. We calculated the mean value of these three dimensions in an already annotated Italian HS corpus (HaSpeeDe 2020). The result is quite unexpected as there seems not to exist any meaningful correlation between HS and negatively connoted terms. Not only negatively connoted terms are not necessary to classify a message as HS, but they are not sufficient either. Consequently, HS detection software must take other dimensions into account.

DOI Code: 10.1285/i22390359v59p413

Keywords: hate speech; connoted terms; valence; arousal; dominance.

References


Bradley M.M. and Lang P.J. 1994, Measuring emotion: The Self-Assessment Manikin and the semantic differential, in “Journal of Behavior Therapy and Experimental Psychiatry”, 25, pp. 49–59.

Bradley M.M. and Lang P.J. 1999, Affective norms for English words (ANEW): Instruction manual and affective ratings, in Technical Report C-1, The Center for Research in Psychophysiology, University of Florida. https://www.uvm.edu/pdodds/teaching/courses/2009-08UVM-300/docs/others/everything/bradley1999a.pdf (19/7/2021).

Bosco C., Dell’Orletta F., Poletto F., Sanguinetti F. and Tesconi M. 2018, Overview of the EVALITA 2018 Hate Speech Detection Task, in Caselli T., Novielli N., Patti V. and Rossi P. (eds.) Proceedings of the Sixth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, CEUR, vol. 2263, http://ceur-ws.org/Vol-2263/paper010.pdf (19/7/2021).

Buechel S. and Hahn U. 2017, EMOBANK: Studying the Impact of Annotation Perspective and Representation Format on Dimensional Emotion Analysis, in Lapata M., Blunsom P. and Koller A. (eds.), Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Vol. 2, Short Papers, ACL, pp. 578–585, 2017. https://aclanthology.org/E17-2092.pdf (19/7/2021).

Capozzi A.T.E., Lai M., Basile V., Poletto F., Sanguinetti M., Bosco C., Patti V., Ruffo G., Musto C., Polignano M., Semeraro G. and Stranisci M. 2019, Computational Linguistics Against Hate: Hate Speech Detection and Visualization on Social Media in the “Contro L’Odio” Project, in R. Bernardi, R. Navigli, and G. Semeraro (eds.), Proceedings of the Sixth Italian Conference on Computational Linguistics, CLiC-it 2019. http://ceur-ws.org/Vol-2481/paper14.pdf (19/7/2021).

Capozzi A.T.E., Lai M., Basile V., Poletto F., Sanguinetti M., Bosco C., Patti V., Ruffo G., Musto C., Polignano M., Semeraro G. and Stranisci M. 2020, “Contro L’Odio”: A Platform for Detecting, Monitoring and Visualizing Hate Speech against Immigrants in Italian Social Media, in “Italian Journal of Computational Linguistics”, 6[1], pp. 77-97. https://journals.openedition.org/ijcol/659?lang=it (19/7/2021).

Davidson T., Warmsley D., Macy M. W. and Weber I. 2017, Automated Hate Speech Detection and the Problem of Offensive Language, in Proceedings of the eleventh international AAAI conference on web and social media (ICWSM), AAAI Press, Palo Alto, California, pp. 512-515. https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15665/14843 (19/7/2021).

Del Vigna F., Cimino A., Dell’Orletta F., Petrocchi M. and Tesconi M. 2017, Hate Me, Hate Me Not: Hate Speech Detection on Facebook, in Armando A., Baldoni R. and Focardi R. (eds.), Proceedings of the First Italian Conference on Cybersecurity (ITASEC17), pp. 86-95. http://ceur-ws.org/Vol-1816/paper-09.pdf (19/7/2021).

de Gibert O., Perez N., García-Pablos A. and Cuadros M. 2018, Hate Speech Dataset from a White Supremacy Forum, in 2nd Workshop on Abusive Language Online (ALW2), Association for Computational Linguistics, pp. 11–20. https://aclanthology.org/W18-5102.pdf (19/7/2021).

Femia D. 2020, Discorso dell’odio e risorse per il trattamento automatico delle lingue. Metodi, ipotesi, proposte, in Petrilli R. (a cura di), Hate Speech. L’odio nel discorso pubblico. Politica media e società, Round Robin, Roma, pp. 147-164.

Ferrini C. e Paris O. 2019, I discorsi dell’odio. Razzismo e retoriche xenofobe sui social network, Carocci, Roma.

Fortuna P. and Nunes S. 2018, A Survey on Automatic Detection of Hate Speech in Text, in “ACM Computing Surveys” 51 [4], art. n. 85, pp.1–30. https://doi.org/10.1145/3232676 (19/7/2021).

Jeshion, R. 2013, Slurs and Stereotype, in “Analytic Philosophy” 54, pp. 314–329.

Joulin A., Grave E., Bojanowski P. and Mikolov T. 2017, Bag of Tricks for Efficient Text Classification, in Lapata M., Blunsom P. and Koller A. (eds.), Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, vol. 2, Short Papers, ACL, pp. 427–431. https://www.aclweb.org/anthology/E17-2068 (19/7/2021).

Kerbrat-Orecchioni C. 1977, La connotation, PUL, Lyon.

Kovács, G., Alonso, P. and Saini, R. 2021, Challenges of Hate Speech Detection in Social Media. Data Scarcity, and Leveraging External Resources, in “SN Computer Science”, 2, art. n. 95, https://doi.org/10.1007/s42979-021-00457-3 (19/7/2021).

MacAvaney S., Yao H.-R., Yang E., Russell K., Goharian N. and Frieder O. 2019, Hate speech detection: Challenges and solutions, in “PLoS ONE”, 14(8), e0221152. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221152 (19/7/2021).

Montefinese, M. Ambrosini E., Fairfield B. and Mammarella N. 2014, The adaptation of the Affective Norms for English Words (ANEW) for Italian, in “Behavior Research Methods” 46, pp. 887–903.

Petrilli R. 2020, Il meccanismo dell’odio nel discorso pubblico, in Petrilli R. (a cura di), Hate Speech. L’odio nel discorso pubblico. Politica media e società, Round Robin, Roma, pp. 41-58.

Ross B., Rist M., Carbonell G., Cabrera B., Kurowsky N. and Wojatzki M. 2016, Measuring the Reliability of Hate Speech Annotations: The Case of the European Refugee Crisis, in Dipper S. (ed.), Proceedings of NLP4CMC III: 3rd Workshop on Natural Language Processing for Computer-Mediated Communication (Bochumer Linguistische Arbeitsberichte 16), Ruhr-Universität Bochum, Bochum, pp. 6-9. https://arxiv.org/pdf/1701.08118.pdf (19/7/2021).

Russel J.A. and Mehrabian A. 1977, Evidence for a Three-Factor Theory of Emotions, in “Journal of Research in Personality” 11, pp. 273-294.

Sanguinetti M., Poletto F., Bosco C., Patti, V., and Stranisci M. 2018, An Italian Twitter Corpus of Hate Speech against Immigrants, in Calzolari N. et al. (eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), pp. 2798-2805. https://aclanthology.org/L18-1443.pdf (19/72021).

Sanguinetti, M., Comandini, G., Di Nuovo, E., Frenda, S., Stranisci, M., Bosco, C., Caselli, T., Patti, V. & Russo, I. 2020, HaSpeeDe 2@ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task, in Basile V., Croce D., Di Maro M., and Passaro L.C. (eds.), Proceedings of the Seventh Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2020), CEUR, vol. 2765. http://ceur-ws.org/Vol-2765/paper162.pdf (19/7/2021).

Scott G.G., Keitel A., Becirspahic M., Yao B., Sereno Sara C. 2019, The Glasgow Norms: Ratings of 5,500 words on nine scales, in “Behavior Research Methods” 51, pp. 1258–1270. https://doi.org/10.3758/s13428-018-1099-3 (19/7/2021).

Vallée R. 2014, Slurring and Common Knowledge of Ordinary Language, in “Journal of Pragmatics” 61, pp. 78–90.

Vedovelli M. 2020, Il caso “cambia vita”: il razzismo comunicativo dall’insulto al messianismo, in Petrilli R. (ed.), Hate Speech. L’odio nel discorso pubblico. Politica media e società, Round Robin Roma, pp. 129-146.

Warriner A.B., Kuperman V. and Brysbaert M. 2013, Norms of valence, arousal, and dominance for 13,915 English lemmas, in “Behavior Research Methods” 45, pp. 1191–1207, https://doi.org/10.3758/s13428-012-0314-x (19/7/2021).

Zimmerman S., Kruschwitz U. and Fox C. 2018, Improving Hate Speech Detection with Deep Learning Ensembles, in Calzolari N. et al., Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018, Miyazaki, Japan), European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2018/pdf/292.pdf (19/7/2021).


Full Text: PDF

Refbacks

  • There are currently no refbacks.
کاغذ a4

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.