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Abstract
1 -  The biological elements, proposed by the WFD as quality elements for the classification of ecological 

status of the transitional waters are: composition, abundance and biomass of phytoplankton; 
composition and abundance of other aquatic flora (i.e. macroalgae and angiosperms); composition 
and abundance of benthic invertebrate fauna; composition and abundance of fish fauna.

2 -  Although the directive proposed these biological elements, it doesn’t provide clear indication on the 
“biocriteria”  to achieve. WFD suggested that ecosystem health should be defined by comparison to 
reference conditions.

3 -  Recently, there has been a growing interest and need for sound and robust ecological indices to 
evaluate transitional ecosystem status and condition, mainly under the scope of the Water Framework 
Directive implementation.

4 -  A good biotic index should reflect the biological integrity; respond to environmental stresses in 
monotonic way; be measurable with low error; be cost-effective; be not invasive (i.e. the measure 
methods do not significantly disturb or alter habitats and biota). 

5 -  Several indices have been developed for environmental quality assessment using macrobenthic 
assemblages, ranging from the comparison of a single metric to complex multivariate analyses. 
Some indices were developed for fish assemblages and for macrophytes, but only few indices were 
proposed considering the phytoplankton.

6 -  In this report, we shown and compare several biotic indices used for evaluating ecological status of 
transitional water ecosystems using the five biological quality elements. 
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1 Introduction
Transitional waters, which include coastal 
lagoons, salt marshes, saltworks, river 
estuaries and deltas, are heterogeneous 
and dynamics ecosystems (Gomez et	 al., 
1998; Benedetti-Cecchi et	 al., 2001). Their 
morphology and hydrology change quickly 
under the influence of high sedimentation 
rate, natural coastal dynamics and frequent 
human intervention (Ver et	 al., 1999; 
Pastres et	 al., 2004). These aquatic habitats 
are characterised by high trophic flux and 
large variation of chemical and physical 
characteristics and fast biogeochemical 
cycles (Herbert, 1999; Petihakis et	 al., 
1999; De Wit et	 al., 2001). Moreover most 
transitional water ecosystems are very 
vulnerable to eutrophication and microbial 
and chemical pollution because of their 
confinement, shallow depth and reduced 

water exchange (Barnes, 1999). All of these 
lead to rapid and often unpredictable changes 
in communities’ composition and functioning 
(Herbert, 1999; Sfriso et	al., 2001; Mistri et	
al., 2002).
Conservation and management of transitional 
waters require monitoring activities that 
integrate chemical and physical evaluations 
with biological assessment (Gibson et	
al., 2000; Logan and Furse, 2002). This 
approach was recently introduced in some 
national and international legislations, which 
include the US Clean Water Act (33 U.S.C. 
ss/1251 et seq., 1977) and the European 
Water Framework Directive (WFD; European 
Commission, 2000). The biological elements, 
proposed in the WFD as quality elements for 
the classification of ecological status of the 
transitional waters, are:
• composition, abundance and biomass of 
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authors (Gibson et	al., 2000) suggest to adopt 
different approaches, like:
• comparisons with historical data 

that provide information about the 
communities that once existed and/or 
those that may be re-established;

• application of statistical or empirical 
models following from first principles and 
assumptions and/or built from observed 
relationships between variables;

• turn to opinion/consensus of qualified 
experts.

Alternatively, from an anthropogenic point 
of view, the biocriteria could be established 
on the basis of the use designation of the 
ecosystem (e.g. recreational activities, 
fishing, aquaculture, harbour, etc.; Fig. 1).
 The assessment of ecosystem health required 
both a good knowledge of the ecosystem 
properties and functioning, and some adequate 
tools to measure the alteration from the 
reference or desirable condition. Appropriate 
biotic indicators and indices could represent 
these tools. In this context biotic indices, 
based on the biological components of the 
ecosystems, were specifically developed 
with the aims to provide integrate and 
effectiveness information on the ecosystem 
health. A number of ecological indicators 
have been applied to the “Ecosystem Health 
Assessment” (EHA) but broad indicators that 
provide unambiguous information towards 
different anthropogenic disturbs and in 
different habitats do not exist yet (Simon, 
2000; Jørgensen et	al., 2005b). 
Biotic indices are based on different 
approaches including species diversity, 
species sensitivities to disturbance, 
reproductive and trophic strategies, etc. They 
measure biotic attributes and should provide 
quantitative information on ecological 
condition, structure and functioning of 
ecosystems. To be useful for environmental 
quality assessment and management the 
indices required the definition of relative or 
absolute interpretative scales. 

phytoplankton;
• composition and abundance of other 

aquatic flora (i.e. macroalgae and 
angiosperms);

• composition and abundance of benthic 
invertebrate fauna;

• composition and abundance of fish fauna.
Although the directive proposed these 
biological elements, it doesn’t provide clear 
indication on the “biocriteria”  to achieve. 
The biocriteria are guidelines or benchmarks 
to be adopted to evaluate the relative 
biological integrity of surface waters; they 
could be defined as “narrative expressions or 
numerical values that describe the biological 
integrity of aquatic communities inhabiting 
waters of a given designated aquatic life 
use” (USEPA, 1990). WFD suggested that 
ecosystem health should be defined by 
comparison to reference conditions. Reference 
sites should be represented by “undisturbed 
habitats”, which have “biological integrity”. 
The biological integrity could be defined as 
“...the condition of the aquatic community 
inhabiting unimpaired water bodies of a 
specified habitat as measured by community 
structure and function” (USEPA, 1990). 
Since absolutely pristine transitional waters 
probably do not exist (Basset and Abbiati, 
2004; Thompson and Lowe, 2004), managers 
must decide an acceptable levels of minimum 
impacts that exist or that are achievable in their 
region, taking in to account environmental 
conditions like salinity gradients, trophic 
state, bottom sediment types, morphology 
and biological communities (Gibson et	 al., 
2000). In practice, minimally impaired sites, 
which are not necessarily pristine, could 
represent reference condition; references 
sites should, however, exhibit minimal 
influence by human activities relative to the 
overall region of study (Reynoldson et	 al., 
1997). Unlikely even minimally impaired 
transitional water ecosystems do not exist 
within most of the regions, especially along 
the European coasts. In these cases, some 
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1.1 Characteristics of a good biological 
quality element
Biological quality elements to be use as 
environmental indicators and adopted in 
biotic indices should be (Ward and Jacoby, 
1992):
• easily and quickly measurable;
• wide distributed and present in both 

impaired and pristine areas;
• response in a predictable way to natural 

and anthropogenic disturb;
• reflect the quality of the other components 

of the environment.
 
1.2 Characteristics of a good biotic index
A good biotic index should (Gibson et	 al., 
2000):
• reflect the biological integrity; 
• respond to environmental stresses in 

monotonic way;

• be measurable with low error;
• be cost-effective;
• be not invasive (i.e. the measure methods 

do not significantly disturb or alter 
habitats and biota). 

1.3 Biological quality elements
Several indices have been developed for 
environmental quality assessment using 
macrobenthic assemblages, ranging from the 
comparison of a single metric to complex 
multivariate analyses. Some indices were 
developed for fish assemblages and, recently, 
for macrophytes, but only few indices were 
proposed considering the phytoplankton, 
especially in transi¬tional waters.
 
1.3.1	Benthic	macroinvertebrates
The benthic macroinvertebrates(macro-
invertebrates are generally defined as 

Figure 1. Example of general biocriteria for given classifications of estuaries and coastal marine areas (from 
Gibson et al., 2000).



© 2009 University of Salento - SIBA http://siba-ese.unisalento.it 37

TWB 3 (2009), n.3  Biotic indices for ecological status of transitional water ecosystems 

organism retained by a 0.5 mm sieve size)  
inhabiting soft bottoms are more sedentary 
and thus more reliable as site indicators of 
water quality over time compared to fish 
and plankton. Benthic assemblages are 
potentially good indicators for the following 
characteristics (Bilyard, 1987; Dauer, 1993):
• they includes several infaunal species 

that are typically sedentary (reduced 
mobility), they cannot avoid deteriorating 
water and sediments quality conditions 
and therefore are most likely to respond 
to local environmental impacts;

• since most species have relatively long 
life spans then they over time integrate 
disturbance events;

• they includes a broad range of taxonomic, 
functional and trophic groups with 
different tolerances to different source of 
disturbance;

• most species are sensitive to disturbances 
of habitat such that the communities 
respond fairly quickly with changes in 
species composition and abundance;

• benthic fauna are important components 
of the food chain, including both detritus 
and grazing, and often act to transport 
not only nutrients, but also toxicants, to 
the rest of the system;

• some species are commercially important 
or are important food source for 
economically important species.

From a practical point of view, benthic 
communities present some advantages:
• provides an “in	situ” measure of relative 

biotic integrity and habitat quality;
• some species are wide distributed 

allowing comparison on geographical 
scale;

• assemblages are easily to sample and 
preserve.

Some limitations of benthic fauna sampling 
include: 
• often require high taxonomic expertise;
• generally show high small spatial scale 

heterogeneity, then require several 

replicate samples;
• life cycle induce important seasonal and 

annual changes in the species composition 
and individual size;

• the cost and effort to sort, count, and 
identify benthic invertebrate samples 
can be significant, requiring tradeoffs 
between expenses and the desired level 
of confidence in decisions based upon 
the collected data.

 
1.3.2	 Aquatic	 macrophytes	 (macroalgae	 and	
angiosperms)
Benthic macrophytes comprise evolutionary 
primitive plants like Ulva, Enteromorpha, 
Gracilaria (macroalgae) and evolutionary 
advanced flowering plants like Ruppia, 
Zostera (angiosperms or seagrasses).
Excess of nutrients in water coupled with 
changes in coastal hydrography and water 
optical properties or interactions between 
them often stimulate growth of macroalgae 
and phytoplankton which in turn increase 
water turbidity and shading. The result is 
a non-linear and self-accelerating chain 
reaction (Duarte, 1995; Schramm, 1999; 
Cloern, 2001), which shifts the dominance of 
primary producers in cost of seagrasses often 
ending in anoxia and fish killings (Schramm 
and Nienhuis, 1996).
There are many advantages of using benthic 
macrophytes as biomonitors of transitional 
waters:
• macrophytes are key structural and 

functional components of most 
ecosystems;

• photosynthetic sessile organisms 
behaving as ecosystem engineers by  
providing substrate, habitat and shelter 
for animals; 

• canopy of leaves diminishes wave energy 
and currents significantly affecting 
sediment stability and retention of 
particles;

• macrophytes are vulnerable and adaptive 
to environmental stress of water and 
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sediment (especially for seagrasses);
• they response to pollution as well as to 

other kinds of disturbance, e.g. dredging, 
trawling, increased turbidity;

• field collections need simple equipments;
• remote means such as aerial photography, 

if the water is clear or shallow, can easily 
assess macrophyte abundance and extent;

• predictive models and sound ecological 
theory explain interactions to certain 
environmental factors, e.g. nutrients.

Expertise requirement for taxonomic 
identification at the species level and 
ephemeral behaviour with high spatial and 
temporal variability may disadvantage the 
usage of macroalgae as quality elements. 
However, low macroalgal diversity in 
transitional waters as well as easily 
recognizable macroalgal functional 
characteristics help to develop user friendly 
and cost-effective monitoring protocols.
Slow changes in community structure and 
biomass, occasionally caused by extreme 
meteorological (storms) and hydrological 
(river floods) events, may disadvantage the 
usage of angiosperms as a quality elements. 
Where long-term data series are available, one 
can often identify regular patterns, which are 
site or region-specific (e.g., biomass peaks, 
flowering periods, etc.). Since submerged 
macrophytes could also follow long-term 
periodicity additional parameters (e.g. 
water and sediment nutrient concentrations, 
light attenuation) are required to interpret 
macrophyte data. In the past, seagrasses 
diseases, e.g. in Zostera, have been also 
observed.
 
1.3.3	Phytoplankton
Phytoplankton is an important component in 
transitional waters both in term of biomass 
and primary production, which implies that 
this assemblage should provide valuable 
information in an assessment of ecosystem 
condition. Advantages of using phytoplankton 
include: 

• it provide the most notable indication of 
eutrophication in term of rapid changes 
in community structure and functioning; 

• changes in plankton primary production 
will in turn affect higher trophic levels of 
macroinvertebrates and fish; 

• many countries routinely monitor 
chlorophyll as a part of water quality 
monitoring due to the ease and relatively 
low cost of analysis; 

• plankton have generally short life cycles 
and rapid reproduction rates making 
them valuable indicators of short-term 
impacts.

The possible disadvantages using 
phytoplankton as bio-indicator are:
• populations are subject to rapid drift with 

the winds, tides, and currents, especially 
in the channels; 

• taxonomic identification can be difficult 
and time-consuming; 

• increased phytoplankton biomass could 
be balanced by increasing of grazing by 
zooplankton, that suggest to investigate 
phytoplankton and zooplankton together;

• phytoplankton exhibit high turnover rates 
and moreover microalgal blooms could 
be ephemeral, therefore high frequency 
sampling is required.

 
1.3.4	Fish
Fish are an important component of 
transitional ecosystems because of their 
economic, recreational and ecological roles. 
Many anthropogenic disturbs can have a direct 
influence on the food resources, distribution, 
diversity, breeding, abundance, growth, 
survival and behaviour of both resident and 
migrant fish species (Whitfield and Elliott, 
2002). Despite the fact that ichthyofaunal 
composition in estuaries is usually dynamic, 
reflecting the ever changing environmental 
factors and life history patterns of the 
various species, fish communities or some 
selecting fishes as bio-indicators could be 
included in transitional water monitoring 
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and management programmes (Whitfield 
and Elliott, 2002). Fish could represent 
good indicators of ecological health because 
(Attrill and Depledge, 1997; Gibson et	 al., 
2000): 
• they are relatively sensitive to most 

habitat disturbances and may exhibit 
physiological, morphological, or 
behavioural responses to stresses; 

• fish may exhibit obvious external 
anatomical pathology due to chemical 
pollutants; 

• fish are important in the linkage between 
benthic and pelagic food webs; 

• they are long-lived and are therefore 
good indicators of long-term effects. 

Unlikely fish assemblages have some 
disadvantages:
• being mobile, sensitive fish species may 

avoid stressful environments, reducing 
their exposure to toxic or other harmful 
conditions;

• fish represent a relatively high trophic 
level, therefore could be not an earlier 
indication of water quality problems; 

• monitoring fish assemblages must be 
take into account their life cycle and 
behaviour, including reproductive and 
overwintering migrations; 

• fish studies may be biased because of 
recreational and commercial fishing 
pressures on the same or related fish 
assemblages; 

• some fish are very habitat selective and 
their habitats may not be easily sampled; 

• since they are mobile, spatial variability 
is very high, requiring a large sampling 
effort to adequately characterize the fish 
assemblage.

 
1.3.5	Other	possible	biological	elements
The other biological elements that could 
be considered in the biological quality 
assessment are zooplankton, epibenthos living 
on hard bottoms and infaunal meiobenthos 
(practically defined as organism which size is 

in the range 0.063 - 0.500 mm) . As previously 
mentioned, zooplankton should be study 
coupled with phytoplankton and, possibly, 
with his mainly predators that is the fish. 
Since hard bottoms are limited distributed 
in transitional waters, epibenthos can not be 
useful everywhere, although some authors 
suggest to include in the monitoring programs 
species living on artificial hard substrata like 
wood piles, bridge pillar, and so on (Jan et	
al., 1994; Marchini et	al., 2004). On the hard 
bottoms could be sample both sessile and 
vagile species, including several typically 
soft-bottom species, which here found shelter 
and sediment niche among crevice and 
bivalve shells. Among the advantages using 
these assemblages there is the simplicity 
of sampling. Moreover these species have 
limited or any mobility, are often very 
sensible to the pollution and are not affected 
by the nearby sediment characteristics, 
but directly respond to the water quality. 

Flow and  
hydrography 

Circulation 
Tidal regime 

Geophysical 
environment 

Soft bottom substrates 
Hard bottom substrates 
Beaches 
Sand flats 
Mudflats 
Emergent marshes 

Water column 
characteristics 

Salinity 
Temperature 
Dissolved oxygen 
pH 
Turbidity 
Nutrients 
Contaminants 
Depth 

Bottom 
characteristics 

Sediment grain size 
Total organic carbon 
Total volatile solids 
Acid volatile sulphides 
Sediment redox potential 
Sediment contamination 

	
  

Table 1 - Main abiotic variables that could be 
considered in transitional waters in order to define 
habitat typologies (after Gibson et al., 2000).
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Recently a fuzzy logic model to recognise 
ecological sectors in the lagoon of Venice 
based also on the benthic sessile community 
was proposed (Marchini and Marchini, 2006).
Meiobenthos includes species with very short 
life span, therefore could be useful as early 
warning and short-term effects monitoring, 
while mainly disadvantages are represented 
by handle and taxonomic difficulty. 
 
1.4 Habitat typology
In order to monitor, manage and protect 
transitional water environments, identification 
of the habitat typologies, delineation of 
their boundaries and characterisation of 
the communities that they host, within a 
consistent classification, is required (Roff 
and Taylor, 2000). Habitat typology could 
be defined according to geophysical features 
(Roff and Taylor, 2000; Roff et	 al., 2003). 
The main abiotic variables that could be 
considered are summarised in Table 1.
Geophysical properties and structural biotic 
components, like seagrasses, should be chosen 
as determinant factors.  In the choice should 
be avoided redundancy and autocorrelation 
between variables. The chosen variables 
can be arranged in hierarchical sequence or 
combinatory way starting from those that 
show the greatest ability to discriminate 
among habitat types (Roff et	al., 2003).
Habitat typologies were directly or indirectly 
considered in several biotic indices. The 
“Lesina Bioindex” for example is starting 
from the conceptual scheme of degree of 
confinement and the relative extension of the 
so-called “paralic” zones in the Mediterranean 
coastal lagoons (Guelorget and Perthuisot, 
1992). Most of the north American benthic 
indices of biotic integrity (B-IBI family) 
considered different metrics (Weisberg et	al., 
1997) and/or provided separated thresholds 
(Van Dolah et	 al., 1999; Eaton, 2001) 
according to habitat typologies, previously 
defined on their salinity and/or sediment 

mud content. Other indices incorporate 
the salinity directly in the calculation 
formula (Engle et	 al., 1994; Engle and 
Summers, 1999; Paul et	 al., 2001).
In the TWReferenceNET EU project 
(Management and Sustainable Development 
of Protected Transitional Waters, EU 
INTERREG III B 2000-2006, CADSES project 
3B073) was adopted a two level factorial 
classification of habitats, which includes 
substratum type and prevalent vegetation 
(Table 2). This combinatory classification 
defines 12 typologies, although some of them 
are fairly rare in transitional ecosystems.  
The most common habitat typology in the 
European transitional waters ecosystems is 
mud without vegetation, followed by mud 
with different kind of vegetation (Table 3).

2 Methodological approaches 
Biological monitoring and ecosystem 
health assessment are based on the possible 
responses of biotic elements to the different 
source of perturbation. The biological 
responses could be analyses at different level 
of biological organisation ranging from intra 
organism (biomarkers), single individuals or 
experimental populations (ecotoxicology) to 
communities (Attrill and Depledge, 1997).

  Prevalent 
substratum 

  Rock Sand Mud 

D
om

in
an

t 
ve

ge
ta

tio
n 

without 
vegetation 1 5 9 

macroalgae  2 6 10 

submerged 
macrophytes 3 7 11 

emergent 
macrophytes 4 8 12 

	
  

Table 2 - Habitat typology adopted in the 
TWReferenceNET EU project and their numeric 
code.
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It is widely accepted that there is a tiered 
cascade in biological responses to increasing 
anthropogenic disturbance. The first 
responses to stress will occur at low levels 
of biological organization but if the stress 
persists or the severity increases, these 
molecular level effects will lead to cellular 
alterations followed by tissue and organs 
dysfunction. Individual metabolic alteration 
will reflect on population dynamics (e.g., 
reproduction, recruitment and mortality) 
and structure, up to local extinctions. 
Population changes will result in alteration 
of interspecific relationships at community 
level, leading ultimately to changes in the 
functional integrity of ecosystems (Fig. 2; 
Spurgeon et	al., 2005 and references therein).
Investigation at the community level is 
generally considered most ecologically 
relevant, because involve a wide taxonomic 
range, reflect the effect of many processes 

at lower level of biological organization, 
integrate these processes over a relatively 
long-term period (Warwick, 1993; Attrill and 
Depledge, 1997). In contrast studies at lower 
biological organisation, like biomarkers, 
could be useful as early warning approach.
Biotic indices are classification tools relate 
to assemblages’ organisation. They are often 
based on species composition and density, but 
sometimes they consider other characteristic 
of the assemblages like biomass, taxonomic 
diversity, trophic guilds, life strategies, size 
spectra, etc. Some biotic indices integrate 
several metrics representing different 
aspect of community organisation and 
functioning. In most cases they explicitly 
include sensitivity or tolerance of the species 
towards pollution or other disturb sources 
(Hilsenhoff, 1987; Majeed, 1987; Clements 
et	al., 1992; Zamoramunoz and Albatercedor, 
1996; Roberts et	al., 1998; Borja et	al., 2000).

Table 3 - Habitat typologies found in the study sites considered in the TWReferenceNET (numbers represent 
the code of Table 2).

  Rock Sand Mud 
Transitional Water system Geographic area 1 2 3 4 5 6 7 8 9 10 11 12 
 Grado lagoon (Italy)  N. Adriatic Sea                 X       
 Grado Cavanata (Italy)  N. Adriatic Sea                 X     X 
 Grado fish farm (Italy)  N. Adriatic Sea                 X       
 Pialassa Baiona (Italy)  N. Adriatic Sea                 X       
 Karavasta (Albania)  S. Adriatic Sea                 X X     
 Narta (Albania)  S. Adriatic Sea                 X       
 Patok (Albania)  S. Adriatic Sea                 X   X   
 Alimini (Italy)  S. Adriatic Sea         X     X X       
 Cesine (Italy)  S. Adriatic Sea             X       X X 
 Margherita di Savoia (Italy)  S. Adriatic Sea                 X X     
 Torre Guaceto (Italy)  S. Adriatic Sea                     X X 
 Agiasma (Greece)  Aegean Sea                   X X   
 Kalloni (Greece)  Aegean Sea                 X       
 Varna (Bulgaria)  Black Sea         X       X       
 Leahova (Romania)  Black Sea                 X     X 
 Sinoe (Romania)  Black Sea         X       X     X 

	
  



© 2009 University of Salento - SIBA http://siba-ese.unisalento.it 42

TWB 3 (2009), n.3 	 M.	Ponti,	M.	R.	Vadrucci,	S.	Orfanidis,	M.	Pinna

Fig. 2. Schematic diagram of the hierarchical relationship between ecotoxicological responses measured at 
different levels of biological organization (after Spurgeon et al., 2005).

Species patterns across pollution/disturbance 
gradients are also explained from species-
specific competition abilities under abundant 
resource conditions (Orfanidis et	 al., 2001, 
2003).
 
2.1 Species diversity
Species diversity represents an emergent 
property of the communities (Begon et	
al., 1986). Species richness and diversity 
indices were introduced in ecology at the 
end of 40’s (Simpson, 1949; Shannon and 
Weaver, 1949; Margalef, 1958; Menhinick, 
1964; McIntosh, 1967). Afterward several 
authors developed new indices and discussed 
their application in different habitats (for 
review see Washington, 1984; Gray, 2000; 
Magurran, 2004). Biological diversity refer 
to the variability among living organisms, 
including diversity within species, between 
species and of ecosystems (Magurran, 2004). 
Species diversity can be investigated at 
different spatial and temporal scales, which 
lead different definition (Whittaker, 1972):
α diversity: the diversity of spatially defined 
units (defined assemblages or within habitat);

β diversity: differences in the compositional 
diversity in space and time, reflecting biotic 
change or species replacement, between 
different areas and/or habitats (e.g. along 
transects; Whittaker, 1960), different 
spatial configuration of sampling units (i.e. 
increasing spatial scale), or changes overtime 
(i.e. turnover);
γ diversity: diversity of a landscape;
ε diversity: diversity of a biogeographic 
province;
δ diversity: is defined as the change in 
species composition and abundances that 
occurs between units of γ diversity within an 
area of ε diversity.
Although other terminology was recently 
proposed (Gray, 2000), these terms were still 
now in use (see also table 4).
Generally in monitoring and biological 
assessment programs species diversity was 
intended as α diversity. Species diversity can 
be partitioned into two components: richness 
and evenness (Simpson, 1949). There are 
several species diversity indices that express 
one or both of these two components. The 
indices that combine both aspects in a single 



© 2009 University of Salento - SIBA http://siba-ese.unisalento.it 43

TWB 3 (2009), n.3  Biotic indices for ecological status of transitional water ecosystems 

statistic are often indicated as “heterogeneity 
indices”.Although most of the ecological 
studies carried out in transitional water 
consider species diversity, absolute 
reference values suitable to define the status 
of assemblages inhabiting these habitats 
doesn’t exist.  Several multimetric benthic 
biotic indices incorporate one or more 
measures of species diversity (see 4.11). In 
these cases relative threshold values were 
comparatively defined according to local 
reference conditions. 
 2.2 Pearson and Rosenberg model
Sediment organic enrichment was considered 

one of the most common disturbances that 
affect benthic assemblages. Relationships 
between benthic community characteristic 
and level of organic enrichment were 
described by the widely accepted Pearson and 
Rosenberg model (Pearson and Rosenberg, 
1978). According to this model, along a 
gradient of increase organic contents species 
richness decrease, numbers of individual 
increase, as a results of high density of 
few opportunistic species, overall biomass 
decrease, except for a small increase at the 
peak of opportunists, and generally average 
body size decrease (Fig. 3).

Figure 3. SAB (Species, Abundance and Biomass) graphical model proposed by Pearson and Rosenberg 
(1978) (after Gray et al., 2002).

Scale inventory diversity differentiation diversity 
within sample point diversity  
between sample, within habitat  pattern diversity 
within habitat α diversity  
between habitat, within landscape  β diversity 
within landscape γ diversity  
between landscape  δ diversity 
within biogeographical province  ε diversity  

	
  

Table 4 - Category of species diversity (Magurran, 2004, after Whittaker, 1972).
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Changes described by Pearson and Rosenberg 
does not concern just species richness, 
abundance and biomass, but also the 
composition of the species assemblage with 
an increase of species tolerant to hypoxic 
conditions (Gray, 1979; Diaz and Rosenberg, 
1995; Gray et	 al., 2002; Hyland et	 al., 
2005). Based on this model several methods 
and indices have been proposed in order to 
assess the environmental quality of coastal 
areas, including transitional waters. Some of 
them consider only synthetic descriptor like 
species richness and evenness, while other 
take into account only species composition 
(Grall and Glémarec, 1997; Majeed, 1987; 
Borja et	al., 2000).
Should be note that organic enrichment 
could be due to both anthropogenic sources 
and natural reason, like local hydrodynamic 
condition that increase sedimentation 
rate or reduce water turnover (Gray et	 al., 
2002). Whatever is the origin of the organic 
enrichment, it leads to oxygen depletion 
and build-up toxic products (ammonia and 
sulphide) associated to the decomposition 
processes (Viaroli et	 al., 2004; Hyland et	
al., 2005). Hydrology plays major roles in 
establish and maintain hypoxic and dystrophic 
conditions. The main effects on benthic fauna 
result from hypoxia and toxicity of sulphide 
rather than organic enrichment per se (Gray 
et	al., 2002). 
Biotic indices based solely on Pearson and 
Rosenberg model frequently assumes that is 
possible to transpose this general trend to 
any kind of pollution or disturbance.
 
2.3 Indicator taxa
Several authors attributes to single “focal” 
species an important role in monitoring 
programs, and in conservation and 
managements projects (for a review see 
Zacharias and Roff, 2001 and references 
therein). Among focal species it is possible 
distinguish between:
• “flagship” species, which have not 

particularly echo-functional or indicator 
role but could be used as a tools to garner 
public support, in transitional waters 
could be represented for example by 
some fishes;

• “umbrella” species, which are those 
whose conservation will also preserve 
other species, like seagrasses;

• “keystone” species, which are critical to 
the ecological function of a community or 
habitat, the importance of these species 
is disproportionate to their abundance 
or biomass, like some top predators or 
seagrasses;

• “indicator” species, which are taxa whose 
presence (or absence) denotes either the 
composition or condition of a particular 
habitat, community, or ecosystem.

These definitions are not exclusive and 
same species could be fall in more than one 
category. In the ecosystem quality assessment, 
indicator species play a major role. If an 
organism known to be intolerant of pollution 
is found to be abundant at a site, high water 
quality conditions can be inferred. On the 
other hand, dominance by pollution tolerant 
organisms could imply a degraded condition. 
When available, indicator taxa could be 
an important, cost-effective preliminary 
survey tool for site assessments. However, 
ecosystem health assessment should be never 
based only on some indicator species.
Among indicator species that could be 
monitored in transitional waters there are 
several amphipods that are known sensitive 
to some pollutants. In San Francisco Bay, for 
example, was demonstrated the sensitivity 
of the amphipod Rhepoxynius	 abronius to 
a complex contaminant mixture including 
pesticides (Swartz et	al., 1994).
Much more questionable is the attribution of 
the roles as indicator of degraded systems to 
tolerant and so called “opportunistic” species. 
The relation of their presence and abundances 
with the environmental conditions are often 
speculative and not really proved. Typical 
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limited number of species. To overcome this 
issue, biotic indices are often calculated only 
on a little subset of the whole species list, 
choosing the species on which sensitivity 
data are available. Attempts to generalize 
species sensitivity to higher taxonomic 
levels (e.g. genus or family) were also 
made (Van Dolah et	 al., 1999). Although 
it is possible to some extent to recognize a 
general trend of response to stress even at 
phylum or class level (e.g. in order of rising 
sensitivity to oxygen depletion: bivalves, 
annelids, crustaceans, fishes; for a review 
see Gray et	 al., 2002), sensitivity can also 
change dramatically within the same genus 
or family. Therefore, any generalization on 
sensitivity should be made carefully.
 
2.4 Taxonomic resolution
Several authors investigated the level of 
taxonomic resolution (i.e. genera, family, 
order, class and phylum) needed to detect 
pollution effects (Ellis, 1985; Warwick, 
1988; James et	 al., 1995; Somerfield and 
Clarke, 1995; Olsgard et	 al., 1997; Olsgard 
et	 al., 1998). They generally indicate 
that identification of organisms to the 
lowest possible taxon may not always be 
necessary to enable description of spatial 
patterns in routine pollution monitoring 
programs. Often family level can represent 
an acceptable approximation for descriptive 
and comparative studies on macrobenthic 
assemblages (Somerfield and Clarke, 1995; 
Olsgard et	al., 1998). Even higher taxonomic 
level (i.e. order and class) could be enough in 
multivariate analyses of benthic assemblages 
in lagoonal ecosystem (Mistri and Rossi, 
2001). However, when biotic indices based 
on species sensitivities are applied to 
assemblages’ data, aggregation to any higher 
taxonomic level should be avoid, unless 
specifically foreseen for some groups (Borja 
and Muxika, 2005).
 

study case is represented by the polychaete 
Capitella	 capitata (actually a complex of 
sibling species; Grassle and Grassle, 1976; 
Gamenick et	 al., 1998). Often, the presence 
of this indicator species corresponds to a 
dominance of deposit feeders that colonize an 
area as organic pollution increases. A problem 
with using pollution tolerant indicator 
organisms is that some of these organisms 
may be ubiquitous and found in naturally 
occurring organically enriched habitats as 
well as in minimally impaired ecosystems. 
Tolerant and ubiquitous organisms can be 
found in sediments far away from sources 
of disturbances. The use of the concept of 
“clean” indicator species is less subject to 
this form of misinterpretation. These “clean” 
or highly sensitive organisms are less likely 
to be found in both polluted and high quality 
habitats.
Several biotic indices, in some way, used 
taxa as indicator attributing some ecological 
importance to each species that compose the 
assemblages. The progenitor of such indices 
could be considered Hilsenhoff, which first 
use arthropods to evaluate water quality in 
freshwaters (Hilsenhoff, 1977; Hilsenhoff, 
1987). Afterward several similar indices 
were proposed for freshwater ecosystems 
(Lenat, 1993; Hawkes, 1998; Graça and 
Coimbra, 1998; Spaggiari and Franceschini, 
2000). Among the benthic biotic indices for 
coastal and transitional waters, BRI (Smith 
et	 al., 2001), AMBI (Borja et	 al., 2000) 
and BENTIX (Simboura and Zenetos, 2002) 
are clear examples of this approach. But 
practically every biotic indices of integrity 
include a measure of the relative abundance 
of species (or higher taxonomic groups) 
considered sensitive or tolerant toward 
pollution or other disturbs.
Although AMBI provide ecological group 
assignment for more than three thousands 
taxa, most of them are based only on “expert 
judgments” while experimental data on 
pollution sensitivity are available only for a 
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symptom of disturbed community (Fig. 4).
Functional diversity concern the number, 
type and distribution of functions performed 
by organisms within an ecosystem (Diaz 
and Cabido, 2001). Several biological traits 
could be considered, like feeding behaviour, 
mobility, etc. (Bremner et	 al., 2003). Some 
trophic indices based on feeding strategies 
were already developed (Word, 1978; 
Gaston and Nasci, 1988; Paiva, 1993; Rizzo 
et	 al., 1996; Pinedo et	 al., 1997). Other 
approaches to the functional diversity could 
be represented by the trophic group analysis 
and biological trait analysis developed for 
terrestrial plant and freshwater invertebrates 
(Bremner et	al., 2003; Bady et	al., 2005).
Main disadvantage come from the difficult 
to assess the real diet of the organism, 
since is often impossible or time-consuming 
observing the stomach content. Assign 
trophic guild to each taxon is sometime 
aleatory because several species change 
feeding behaviour during the life or even 
adapt their diet according to environmental 
condition and food availability (Fauchald 
and Jumars, 1979). Those facts nowadays 
lead to doubt about the possibility of a clear 
separation among trophic guilds (Jørgensen 
et	al., 2005b).

2.6 Body size descriptors
The advances in searching for simple and 

Figure 4. Theoretical k-dominance curves for species abundance and biomass comparison (ABC) for 
undisturbed, moderately disturbed and grossly disturbed communities (after Warwick, 1986).

2.5 Ecological strategies and functional 
diversity
A community “well structured” that includes 
species representing a wide range of 
ecological strategies is generally considered 
expression of pristine habitats. Any measure 
of departure from balanced condition could 
be theoretically adopted as biological index 
of ecosystem health. Starting from this 
assumption, several studies were carried out 
comparing communities in term of feeding 
and/or reproductive strategies. 
Undisturbed communities tend to be 
characterised by few large and long life 
span species represented by rather few 
individuals, which are in equilibrium with 
the available resources. These species 
are frequently called conservative or K 
selected species. Conversely, assemblages 
found in disturbed habitats are dominated 
by small and short life-span species, also 
called opportunist or r-selected species, 
represented by large numbers of individuals. 
From this assumption Worwick proposed 
to assess the community health comparing 
the k-dominance curves (Lambshead et	
al., 1983) for both species abundance and 
biomass (ABC method; Warwick, 1986). 
Following this method a high biomass curve, 
overhanging the abundance curve, indicate 
an undisturbed community, while abundance 
curve higher than biomass should be a 
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effective descriptors of biological ecosystem 
health lead to consider functional related 
descriptors independent to taxonomic 
composition of the assemblages. Body-size-
abundance distributions and biomass-size 
spectra are structural features of aquatic 
communities (Sheldon et	 al., 1972; Sprules 
and Munawar, 1986; Sprules et	 al., 1991; 
Bourassa and Morin, 1995; Morin et	 al., 
2001). 
Body size relates body-size-abundance 
distributions to disturbance pressures 
through individual energetics, population 
dynamics, interspecific interactions and 
species coexistence responses (Basset, 1995; 
Basset et	al., 2004). Main advantages of body 
size and related descriptors are: 
• body-size-abundance distributions are 

consistently less variable than taxonomic 
composition;

• the width of body-size-abundance 
distribution is mainly due to the 
interspecific component;

• the descriptors of body-size-abundance 
distributions seem to respond on 
environmental gradients and generally 
co-vary with species density, richness 
and diversity (Basset et	al., 2004; Sabetta 
et	al., 2005). 

Body size is generally easy to measure, and 
body-size-related descriptors can undergo 
intercalibration procedures, which is a crucial 
requirement of monitoring programmes that 
is not always fulfilled by descriptors of 
biological quality elements related to the 
taxonomic component. As disadvantage, a 
description of the size–abundance distribution 
requires large samples of individuals, and 
obtaining such data can be time consuming. 
Although biotic indices based on body-
size-related descriptors applied to both 
plankton and benthos guilds promise to 
become effective tools for environmental 
quality assessment, at present more data 
are required in order to evaluate the actual 
response of these descriptors to external 

perturbations. Moreover methodological 
standardization is also required in order to 
reduce variability of responses, enhance 
adequacy of intercalibration and translation 
of these responses into an ecosystem health 
index.
 
3 Classification of indices
3.1 Single metrics vs. multimetric indices
A metric is a calculated term or enumeration 
representing some aspect of biological 
assemblage structure, function, or other 
measurable characteristic, which can 
be expressed numerically as integers or 
ratios. Single metrics values can be used 
as indicator and compared directly to the 
reference condition, without development of 
an index. This simplified approach could be 
justifiable where there are practical constrain 
like, for instance, using as reference some 
paleoecological data. 
The multimetric approach consist in an array of 
metrics or measures that individually provide 
limited information on biological status, but 
when integrated, act as an overall indicator 
of biological condition. Metrics incorporate 
information from individual, population, and 
community levels into a single, ecologically-
based index of aquatic ecosystem health. One 
of the first example of multimetric index was 
the fish Index of Biotic Integrity (IBI; Karr, 
1981; Karr et	 al., 1986), which aggregates 
various elements and surrogate measures of 
process into a single assessment of biological 
condition. Developed initially for streams 
(Karr, 1981; Karr et	 al., 1986; Seegert, 
2000a; Seegert, 2000b), the multimetric 
approach has increasingly been applied to 
transitional waters ecosystem, starting from 
north American estuaries (Weisberg et	 al., 
1997; Hyland et	 al., 2000; Eaton, 2001). 
The multimetric indices are typically a sum 
or an average of standardized scores of its 
component metrics. Develop of this indices 
staring from the comparison and selection 
of metrics that differ between reference 
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and degraded sites. Then thresholds and 
standardised scores were defined for each 
metric in order to combine the scores in a 
single index. A comparison of the main 
metrics measurable for different biological 
quality elements are given in table 5, while 
a list of possible macrobenthic invertebrates 
metrics with possible response to disturbs 
events is summarised in Table 6. Most of 
the multimetric indices include a measure of 
the relative abundance of some “pollution-
indicative” and/or “pollution-sensitive” taxa. 
 
3.2 Discriminant analysis and multivariate 
ordination
Combining different metrics in a biotic 
index require standardizing and/or scaling 
the values that each metrics can assume and 
find the correspondence and departure of 
the different combination from the reference 
conditions. A way to distinguish reference 
conditions from impaired states is using the 

multivariate discriminant analysis model. The 
calibrated model is then applied to assessment 
sites to determine whether they are impaired. 
This approach was applied to northern Gulf 
of Mexico estuaries (Engle et	 al., 1994; 
Engle and Summers, 1999) and Virginian 
Biogeographic Province (Paul et	al., 2001).
Multivariate ordination approaches were 
applied to examine differences in species 
composition between reference and impaired 
sites. Examples of these approaches were 
represented by the study of the effects of oil 
drilling in the North Sea (Warwick and Clarke, 
1991), and the index developed for benthic 
quality in California (Smith et	 al., 2001).

3.3 Taxonomic vs. not taxonomic descriptors 
and indices
Assemblages can be described and analysed 
in term of species composition and biomass 
but also in term of trophic and functioning 
structures. All the descriptor and biotic 

Table 5 - Potential metrics for macrophytes, benthic macroinvertebrates, and fish that could be considered 
for estuaries (from Gibson et	al. 2000).
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indices that explicitly or implicitly take 
into account the single species composing 
the assemblages could be defined as 
“taxonomic”. They required the identification 
of all the specimens at the lowest possible 
(or practicable) taxonomic level. Sometimes 
it is sufficient enumerate the taxa and obtain 
the abundance and/or biomass for each of 
them, even without knowing the exact name 
of each species (e.g. diversity indices).The 
“not taxonomic” descriptors and indices were 
based on ecological approaches that overcome 
the necessity of the taxonomic identification. 
They include ecotoxicological, functional, 
size and biomass descriptors. There are also 
mixed taxonomic and not taxonomic indices. A 
scheme of classification is reported in table 7.
 
4 Benthic macroinvertebrate
4.1 Species diversity indices
Species diversity indices can be applied in 

order to compare the assemblages within and 
between transitional water systems. Major 
requirements are the application of the same 
sampling methods (in term of sampling 
device, area and/or volume, number of 
replicates and individual size range, i.e. 
sieve mesh size) and taxonomic resolution. 
To compare studies carried out by different 
researchers in different place or time, standard 
protocol for data collection and laboratory 
analyses is of paramount importance.
Although several multimetric benthic biotic 
indices incorporate one or more measures of 
species diversity (see 4.11), reference values 
and interpretative thresholds vary according 
to habitat typologies and local reference 
conditions.
 
4.1.1	Species	richness
The most common and simple expression 
of species richness is the mean number of 
species per sampling area (S). Since species 
richness estimates depend on sampling 

Metric Response to disturb 
No. of taxa  reduced 
Mean no. of individuals per taxon  substantially lower or higher 
% contribution of dominant taxon  elevated 
Shannon diversity  reduced 
Total biomass  substantially lower or higher 
% biomass of opportunistic species  elevated 
% abundance of opportunistic species  elevated 
Equilibrium species biomass  reduced 
Equilibrium species abundance  reduced 
% taxa below 5-cm  reduced 
% biomass below 5-cm  reduced 
% carnivores and omnivores  elevated 
No. of amphipod species  reduced 
% individuals as amphipods  reduced 
% individuals as polychaetes/oligochaetes  elevated 
No. of bivalve species  reduced 
% individuals as molluscs  reduced 
% individuals as deposit feeders  elevated 
Mean size of organism in habitat  reduced 
Proportion of expected no. of species in sample  reduced 
Proportion of expected no. of species at site  reduced 
Mean weight per individual polychaete  reduced 
No. of suspension feeders  reduced 
% individuals as suspension feeders  reduced 
No. of gastropod species  reduced 
No. of Capitellid polychaete species  elevated 

	
  

Table 6 - Potential metrics for benthic macroinvertebrates that could be considered for transitional waters 
(from Gibson et	al. 2000).
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effort, some authors proposed to compensate 
the sampling effects by dividing the number 
of species recorded by the sample dimension 
in terms of total number of individuals (N) in 
the sample. The most well known formulas 
are:
Margalef ’s species richness  

and Menhinick’s species richness  

Thought the compensation attempts, these 
indices remain affected by sample size. 
Species richness of a given habitat could be 
estimated applying some models, like species 
accumulation and species rarefaction curves, 
as well as other parametric and nonparametric 
methods (for more details see Krebs, 1989 
and Magurran, 2004). For comparative 
purpose, when a standard sampling protocol 

was adopted, S could be considered the most 
effective expression of species richness.

4.1.2	 Heterogeneity
Overall heterogeneity measure can be 
obtained through several diversity indices. 
The most common are:
Simpson’s diversity index (Simpson, 1949):

where pi is the proportion of individuals 
found in the ith species.
Since as D increase, diversity decrease, 
this formula is often called Simpson’s 
“dominance” index. Otherwise the following 
transformation were adopted: 1-D, 1/D, 
-ln(D).
Shannon’s diversity index (Shannon and 
Weaver, 1949):

Although Shannon’s index is often calculated 
using the log2 for historical reason, in ecology 

Typology Group Indicator 
or Index 

Biological 
Elements 

References 

Taxonomic Species 
richness 

S A Margalef, 1958 
d A Margalef, 1958 

Diversity 
indices 

H’ A Shannon and Weaver, 1949 
D A Simpson, 1949 
J A Pielou, 1966 

Δ+, Λ+ A Warwick and Clarke, 1995 
Biotic 
indices 

AMBI B Borja et al., 2000 
BENTIX B Simboura and Zenetos, 2002 

IBI F Karr, 1981 
EBI F Hughes et al., 2002 

B-IBI B Engle et al., 1994; Weisberg et al., 1997; Engle and 
Summers, 1999; Van Dolah et al., 1999; Eaton, 2001; 
Paul et al., 2001; Thompson and Lowe, 2004 

Bioindex LESINA B Breber, 1997, Breber et al., 2001 
SWAMPS B Chessman et al., 2002 

(R/C), (C/Ph) M Sfriso et al., 2002; Fano et al., 2003 
Mixed  EQI B Fano et al., 2003 

FINE B Mistri et al., 2005 
Not 
taxonomic 

Functional Functional 
diversity 

B Bremner et al., 2003; Bady et al., 2005 

EEI M Orfanidis et al., 2001, 2003 
Size BSS B, P Reizopoulou et al., 1996; Lardicci and Rossi, 1998, 

Basset et al., 2004 
 ISD B Reizopoulou and Nicolaidou. A., 2004 

	
  

Table 7 - Possible classification of indices

  2
ipD

   ii ppH log'

N
SDMn 

N
SDMg ln

1




© 2009 University of Salento - SIBA http://siba-ese.unisalento.it 51

TWB 3 (2009), n.3  Biotic indices for ecological status of transitional water ecosystems 

Species richness, evenness and overall 
heterogeneity take into account only the 
number of species and their abundances (or 
biomass). These indices treat all species 
as equal, in practice it is sufficient to 
enumerate the taxa; no knowledge about 
their biological, ecological or phylogenetic 
characteristics was required. From a 
biological evolution and ecological point of 
view, an assemblages constituted by species 
genetically or evolutionary very distant and/
or functionally different, could be considered 
more diversified compared to an assemblages 
with the same number of species and relative 
abundances but genetically or functionally 
homogeneous. The first attempt to consider 
the differences between the species and their 
singleness was made adapting the Shannon’s 
index on taxonomical bases (i.e. including 
familial, generic and species diversity; Pielou, 
1975). A simple estimation of phylogenetic 
diversity can be obtained summing the branch 
length within a taxonomic tree (PD index; 
Faith, 1992). Clarke and Warwick introduced 
a taxonomic distinctness measure, which 
is a natural extension of Simpson’s index 
(Warwick and Clarke, 1995; Clarke and 
Warwick, 1998; Warwick and Clarke, 1998). 
These measures consider the path length 
in a Linnaean taxonomic tree between two 
randomly chosen organisms. There are two 
forms: considering both species abundances 
and taxonomic relatedness:
Taxonomic diversity index:
 

or considering only the taxonomic 
relatedness:
Taxonomic distinctness index:
 

where ωij is the taxonomic path length 
between two species, xi and xj are the 
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natural logs was sometimes preferred even if 
there are no pressing biological reasons to 
prefer one base instead of another, therefore 
the logarithm base applied should be always 
declared. Although superiorly unlimited, 
in practice Shannon’s index, whatever base 
was applied, tend to assume values in a very 
narrow interval, which lead sometimes in 
difficult in distinguish differences among 
sites. To meaningful the measure often the 
index was transformed by ExpH’(where 
Exp is the base of logarithm applied). This 
transformation, also known as Hill’s N1 
index, intuitively gives the number of species 
that would have been found in the sample had 
all species been equally common (Whittaker, 
1972; Hill, 1973).
Although Shannon’s index was widely applied, 
a general agreement on the relationship of 
the index and the ecological status is far 
to achieve. A possible interpretation scale 
proposed for Norwegian fjords, using H’ 
(log2) is (Molvær et	al., 1997):
0-1 bad status
1-2 poor status
2-3 moderate status
3-4 good status
> 4 high status
 
4.1.3	 Evenness
Both Simpson and Shannon’s indices are 
expression of the overall heterogeneity, the 
corresponding evenness component can be 
obtained dividing the values by the maximum 
diversity that could be possible occur, which 
is the situation where all species have equal 
abundances. For the Shannon’s index, the 
evenness component is the:
Pielou’s index:  

(using the appropriate base of logarithm)
While for the N1 index, the corresponding 
evenness component, often-called Hill’s N10 
index, is calculated by N1/S (Hill, 1973).
 4.1.4	Phylogenetic	and	functional	diversity

SHJ log/''
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abundances of the ith or jth species.
When presence/absence data are used both 
measures reduce to the same statistic:
 

where S is the number of species in the study.
The corresponding evenness of the 
distribution of taxa across the hierarchical 
taxonomic tree is (Clarke and Warwick, 2001 
Warwick and Clarke, 2001) the variation in 
average taxonomic distinctness index:
 

where  

Phylogenetic measurement of diversity 
could be calculated on the base of genetic 
distances. Although genetic distances have 
much more biological significance then an 
artificial taxonomic hierarchical tree, they 
are far to be available for all pair of species.
Following the taxonomic diversity approach, 
functional diversity can be calculated on 
the base of the total “branch length” of a 
dendrogram constructed from species trait 
values, which are linked to the ecosystem 
process of interest (FD index; Petchey and 
Gaston, 2002a; Petchey and Gaston, 2002b).
Although diversity indices, as well as 
phylogenetic and functional diversity 
indices were applied in several monitoring 
and quality assessment studies carried out 
in transitional water ecosystems, still now 
no reference values to distinguish between 
impaired and pristine sites were proposed 
both at local or regional scale. Comparing 
three coastal lagoons at different level of 
human impact and eutrophication in the south 
of French (Mediterranean Sea), the number 

of macrobenthic species found with the same 
sampling effort ranging from 7 in the most 
impacted ecosystem to 27 in the less impacted 
(Mouillot et	 al., 2005b). In this study, the 
average taxonomic distinctness (Δ+) was 
inversely related to eutrophication level, 
while variation in taxonomic distinctness 
(Λ+) increased with eutrophication.
Diversity indices, including taxonomic 
distinctness, were used to investigate 
benthic communities along the land-seaward 
gradient in two dates (year 1976 and 1989) 
in Sacca degli Scardovari, a northern Italian 
Adriatic coastal lagoon (Mistri et	al., 2000). 
Although multivariate ordination (nMDS) 
showed clear pattern between date and along 
the environmental gradient, the univariate 
indices were able to clearly describe the 
gradient only in the second sampling date.
 
4.2 ABC method and W-statistic index
Starting from the graphic ABC methods 
(Warwick, 1986), based on the comparison 
of the abundance and biomass k dominance 
curve, Clarke derived the W-statistic index 
(Clarke, 1990):
         
 W = ΣS

i=1 (Bi - Ai) / [50 (S - 1)]

where S is the number of species and Ai and Bi 

are the abundance and biomass respectively 
of the ith species. W assumes values between 
+1, indicating undisturbed system, and -1, 
extremely polluted. Values close to 0 indicate 
a moderate level of disturb.
The method was demonstrated robust in 
a wide range of situation, even in some 
Mediterranean lagoons (Reizopoulou et	 al., 
1996). On the contrary, some studies obtained 
confusing results applying the W-statistic to 
macrobenthic assemblages in transitional 
water ecosystem (Beukema, 1988; Lardicci 
and Rossi, 1998). That probably because in 
such ecosystem persist a natural disturb and 
there are many species that could confound 
the ABC curves (Lardicci and Rossi, 1998).
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4.3 “Lesina” Bioindex
Breber and colleagues proposed the “Lesina” 
Bioindex as a tool for “ecological quality” 
assessment of Italian coastal lagoon, in 
order to answer the requirement of the 
Italian law D. Lgs.152/99 concerning the 
preservation of land and sea waters (Breber, 
1997; Breber et	 al., 2001). This index is 
based on the concept of indicator species 
associated to the oxygen and salinity 
conditions, following the conceptual scheme 
of confinement (Guelorget and Perthuisot, 

1983; Guelorget and Perthuisot, 1992). 
According to the confinement scheme, within 
the Mediterranean coastal lagoons could be 
distinguished six “paralic” or “confinement” 
zones along the confinement gradient, from 
zone I which is the most marine-influenced 
to zone VI which is the most confined and 
where biological populations are different 
depending on the water balance of the basin 
(Fig. 5). These zones should be recognized on 
bionomic bases, according to living species 
(Table 8). The relative extent of the zones 
should define the “ecological quality” of the 

Figure 5. Biological zones defining the degree of confinement in the Mediterranean model of the paralic 
ecosystem. Quantities of benthos and phytoplankton in relation to degree of confinement were also reported 
(after Guelorget and Perthuisot, 1983).
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lagoon.
The authors suggested to sample the 
macrobenthic invertebrate assemblages 
following a stratify design dividing the lagoon 
in 50 or more sub areas, taking a sample 
unit for each sub area. They also suggest 
to sample in autumn, after the eventually 
dystrophic crises, in order to evaluate the 
worst situation. Proposed methods include 
15x15 cm sampling area and 1 mm sieve 
size. Each sample unit must be attributed to 
one of the six bionomic zone according to 
the species found (Breber et	 al., 2001). The 

formula of the index is:
 

where i indicate the paralic zone (I-VI) , ni 

the number of sample units falling in each 
zone, N the total number of sample units, bi 

the mean biomass in grams of wet weight for 
the ith zone, Si the number of species. The 
index should assume values between 1, worst 
conditions, and 10, higher ecological quality.
The index is intended to evaluate the overall 

Table 8 - Species characterising the paralic zones (according to Breber et al., 2001) 
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Zone    

I 

Bivalves  
Spisula subtruncata 
Glycimeris insubrica 
Acanthocardia tuberculata 
Donax venustus 
Tellina pulchella 
Tellina planata 
Tellina fabula 
Mactra stultorum 
Scrobicularia cottardi 

Pharus legumen 
Ensis minor 
Solen marginatus  
 
Gastropods  
Nassarius pygmaeus 
Bela nebula 
Acteon tornatilis 
Neverita josephinia 
Nassarius mutabilis  

Crustaceans  
Iphinoe trispinosa  
 
Polychaetes  
Nephtys hombergii 
Sigalion mathildae 
 
Echinoderms  
Echinocardium mediterraneum 

II 

Bivalves  
Mactra corallina 
Mactra glauca 
Tellina tenuis 
Donax semistriatus 
Donax trunculus 
Acanthocardia echinata 
Dosinia exoleta 

Polychaetes  
Cirriformia tentaculata 
Magelona papillicornis 
Owenia fusiformis 
Phyllodoce mucosa 
Pectinaria koreni  
 
 

Echinoderms  
Asterina gibbosa 
Holothuria poli 
Paracentrotus lividus 

III 

Bivalves  
Tapes decussatus 
Tapes philippinarum 
Paphia aurea 
Scrobicularia plana 
Corbula gibba 
Loripes lacteus 
Gastrana fragilis 
Anadara diluvii 

Gastropods  
Akera bullata  
 
Crustaceans  
Upogebia pusilla  
 
 

Polychaetes  
Nephtys hombergii 
Armandia cirrhosa 
Glycera convoluta 

IV 

Bivalves  
Abra segmentum 
Cerastoderma glaucum 
Mytilaster minimus  
 
 

Gastropods  
Cyclope neritea 
Hydrobia acuta  
 
Crustaceans  
Corophium insidiosum 

Polychaetes  
Nereis diversicolor 
Perinereis cultrifera 

V 
Gastropods  
Hydrobia acuta 
Pirenella conica 

Crustaceans  
Corophium insidiosum  
 

Polychaetes  
Nereis diversicolor 

VI Sessile and burrowing macrofauna absent 
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lagoonal ecosystem, not the inner disturbance 
gradients. Attribution of sampling units 
(and sub areas) to different bionomic 
zones appeared almost subjective. Even the 
different importance attributed to these zones 
is questionable. 
Although this index could able to detect some 
long time evolutional trends, like salinity 
and hydrodynamic changes, increasing 
eutrophication or organic enrichment, it 
seems to be little sensitive to chemical 
pollution. This index was applied only to 
the south Italian Varano and Lesina coastal 
lagoons.
 
4.4 Water quality index for Catalunya 
wetlands (QUALES)
The water quality index for Catalunya 
wetlands (QUALES; Boix et	 al., 2005), 
was developed on the basis the studies 
carried out in ponds, lagoons and marshes 
of the north-eastern Iberian peninsula. 
This index incorporates a measurement of 
taxon sensitivity (called ACCO index), and 
the taxonomic richness of crustaceans and 
aquatic insects (called RIC index):

QAELS = (ACCO+1) x log(RIC+1)

where ACCO index is calculated from the 
relative abundance of each microcrustacean 
taxon (Cladocera, Copepoda and Ostracoda) 
weighted by an ecological quality 
requirement coefficient, which was obtained 
for each taxon by means of partial canonical 
correspondence analysis; while RIC index is 
the sum of the number of crustacean genera, 
plus the number of families of immature 
stages of insects (nymphs, pupae and larvae), 
plus the number of adult Coleoptera and 
Heteroptera genera (for more detail see Boix 
et	al., 2005).
Sampling method required a standard dip-net 
(mesh size: 250 μm) and a fixed number of 
sweeps. The method includes different scores 
and quality coefficients for athalassohaline 

wetlands (salinity > 5 psu without marine 
source), thalassohaline wetlands (salinity > 
5 psu with marine source), permanent and 
temporary freshwater wetlands. Moreover, 
QUAELS index values were assigned to five 
categories of water quality following the 
European Water Framework Directive.
The index was developed and applied in 99 
shallow lentic ecosystems. Although some 
transitional waters were considered in this 
dataset, this index appeared more oriented to 
freshwaters ecosystems.

 4.5   Swan Wetlands Aquatic Macroinvertebrate 
Pollution Sensitivity (SWAMPS)
Swan Wetlands Aquatic Macroinvertebrate 
Pollution Sensitivity (SWAMPS) is a 
taxonomic biotic index proposed by 
Chessman et	 al. in order to evaluate the 
health of wetlands near Perth, Western 
Australia. A score, ranging between 1 and 
100, is assigned to each taxon according to 
its sensitivity to anthropogenic disturbance, 
primarily nutrients enrichment (Chessman et	
al., 2002). SWAMPS for individual wetlands 
were calculated as abundance-weighted or 
unweighted means of the scores of all taxa 
present in standard samples. Samples were 
taken by a D-framed sweep net with a mouth 
area of 0.034 m2 and 0.25 mm mesh, moved 
from the water surface to the bottom ten times 
over a distance of 10 m.Scores can be assigned 
at species level (SWAMPS-S) or at family 
level (SWAMPS-F). SWAMPS-S is much 
more accurate and well related to nutrients 
enrichment and chemical and physical 
characteristic of water than SWAMPS-F. A 
list of 80 families and 246 species from the 
Western Australia was provided (Chessman 
et	al., 2002). The interpretation of SWAMPS 
index appropriate for the Western Australia 
is summarised in table 9.
 
4.6 Weighted Biotic Index (WBI)
The Weighted Biotic Index (WBI) 
could be considered a semi-quantitative 
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rapid assessment method based on the 
SWAMPS index (Chessman et	 al., 2002). 
Macroinvertebrate samples are collected, for 
each dominant habitat, using the same sweep 
net (250 µm mesh) but limiting the sampling 
time to 2 minutes. Samples are sorted ‘on-
site’ while the invertebrates are alive. No 
more than two hundred animals are picked 
from the samples, with a maximum of ten 
individuals of each family or morphotype 
to be selected. Samples are sorted for a 
maximum of 30 minutes. Abundances are 
visually estimate in four classes, which 
correspond to an abundance score (Table 10), 
then preserved for further classification to 
the family level.
The Weighted Biotic Index is calculated as:

where ASi is the abundance score and SGVi 
is the SWAMPS score value at family level 
(Table 11). Wetlands can be classified into 
three categories of environmental quality, in 
the same way of SWAMPS index, on the basis 
of their average score values (Table 12).
This index was adopted by the National 

 
iiiii ASSGVASWBI  

Score Class Abundance 
1 Rare <10 ind./sweep 
2 Common 11–100 ind./sweep 
3 Abundant 101–1000 ind./sweep 
4 Highly 

abundant 
>1000 individuals /sweep 

	
  

Table 10 - Abundances classes

Action Plan for Salinity and Water Quality 
(NAP) and by the Natural Heritage Trust 
(NHT) programs at the regional level, 
which are cooperatively implemented by the 
Australian, State and Territory Governments. 
As deducible from the sampling methods 
described above and the taxa list, both 
SWAMPS and WBI indices are mainly 
oriented to freshwaters and low salinity 
wetlands, whose macroinvertebrate 
assemblages are characterised by insects and 
freshwater crustaceans. Moreover sampling 
method involves also zooplankton species.

4.7 Ecofuntional Quality Index (EQI)
The Ecofuntional Quality Index (EQI) is 
a multimetric index for the evaluation of 
environmental quality in transitional waters 
developed using biotic data from three 
Italian coastal lagoons (Fano et	 al., 2003). 
This index incorporates measures of primary 
productivity (as phytoplankton, seaweed 
and seagrass biomasses), structure and 
productivity of the benthic community (as 
numerical abundance, biomass density, 
number of taxa, and taxonomic diversity of 
macrozoobenthos), and trophic complexity 
(expressed as macrozoobenthic functional 
diversity). The index is obtained by the sum of 
weights given to these seven or eight metrics 
(dependent if macrophytes are present or 
not), each transformed onto a dimensionless 
0–100 quality scale. This standardization is 
simply made by assigning 100 to the highest 
value fund, and by normalising to 100 all 

Interpretation for the Swan Coastal Plane SWAMPS-S SWAMPS-F 
Cultural eutrophication or other human impact is likely <46 <42 
Cultural eutrophication or other human impact may be present (more 
investigation is needed) 

46 - 49 42 - 44 

Cultural eutrophication is unlikely (but the possible presence of an unusual 
human impact to which SWAMPS is not sensitive should not be ignored  

>49 >44 

	
  

Table 9 - Indicative interpretation of SWAMPS-F level and SWAMPS-S level scores for wetlands on the 
Swan Coastal Plane, Western Australia (Chessman et	al., 2002).
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The authors admitted that this index should 
be intended as preliminary until its validation 
is accomplished by incorporating data from a 
wider range of lagoon environments. 
However there are two possible criticisms: 
firstly it is unlikely to find a reference 
site within each ecosystem considered that 
provide the best values for the metrics, 
therefore each studies should be required 
a homologous reference site; secondly it is 
questionable to attribute positive contribution 
to high biomass of phytoplankton and 
seaweed, especially in presence of blooms 
due to eutrophication.
 
4.8 AZTI’ Marine Biotic Index (AMBI)
The AZTI’ Marine Biotic Index (AMBI, 
also known as Biotic Coefficient, BC) 
was developed by Borja et	 al. (2000) for 
European coastal waters. AMBI is based on 
the classification of species in five ecological 
groups, as previously proposed by some other 
authors (Glémarec and Hily, 1981; Glémarec, 
1986; Majeed, 1987; Grall and Glémarec, 
1997), and their distribution along an organic 
pollution gradient, according to the ecological 
succession in stressed environments 
(Pearson and Rosenberg, 1978; Fig. 6). 
The ecological groups (EGs) was defined as:
• EGI: species very sensitive to organic 
enrichment and present under unpolluted 
conditions (initial state). They include the 

WBI Interpretation for Swan Coastal Plain 
wetlands, Western Australia  

< 50  Severe eutrophication or the impact of 
other human activities is likely.  

50 – 60  Eutrophication or the impact of other 
human activities may be present (more 
investigation is needed).  

> 60  Eutrophication is unlikely (but the 
possible presence of an unusual human 
impact to which SWAMPS is not 
sensitive should not be ignored).  

	
  

Family  Score Family  Score 
Aeshnidae  65 Libellulidae  73 
Amphisopidae  31 Limnesiidae  64 
Ancylidae  72 Limnetidae  50 
Arrenuridae  59 Limnocharidae  66 
Baetidae  69 Limnocytheridae  73 
Bosminidae  64 Lymnaeidae  58 
Caenidae  71 Macrothricidae  79 
Candonidae  63 Megapodagronidae  36 
Ceinidae  50 Mesoveliidae  58 
Centropagidae  100 Moinidae  42 
Ceratopogonidae  65 (Nematoda)  46 
Chironominae  44 Noteridae  36 
Chrysomelidae  65 Notonectidae  46 
Chydoridae  38 (Oligochaeta)  55 
Coenagrionidae  47 Oribatidae  70 
Corduliidae  72 Orthocladinae  46 
Corixidae  6 Oxidae  63 
Culicidae  66 Palaemonidae  83 
Cyclopidae  26 Parastacidae  69 
Cyprididae  23 Perthidae  78 
Cypridopsidae  5 Pezidae  76 
Daphniidae  1 Physidae  48 
Darwinulidae  65 Pionidae  30 
Dytiscidae  50 Planorbidae  66 
Ecnomidae  51 Pleidae  67 
Ephydridae  59 Pomatiopsidae  52 
Eylaidae  53 Ptilodactylidae  56 
Glossiphoniidae  29 Pyralidae  66 
Halicaridae  64 Sididae  52 
Haliplidae  62 Simuliidae  62 
(Harpacticoida)  61 Sphaeriidae  53 
Helodidae  66 Stratiomyidae  48 
Hydrachnidae  22 Succineidae  57 
Hydrobiidae  76 Tabanidae  58 
Hydrodromidae  66 Tanypodinae  71 
Hydrophilidae  60 Thaumauleidae  66 
Hydroptilidae  67 Tipulidae  35 
(Hydrozoa)  64 (Turbellaria)  63 
Leptoceridae  50 Unionicolidae  58 
Lestidae  63 Veliidae  60 

	
  

Table 11 - SWAMPS grades for families of macro 
invertebrates recorded from wetlands on the Swan 
Coastal Plain, Western Australia.

Table 12 - Indicative interpretation of WBI scores 
for wetlands on the Swan Coastal Plane.

the other values. Although total scores close 
to the maximum possible (700-800) should 
indicate high ecological health, thresholds 
of classification were not provided.
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Benthic invertebrates are classified into 
ecological groups according to a checklist 
regularly updated by some scientists. In 
October 2005 the list included 3459 taxa. 
The index is calculated by the formula:
 

The index can assume value in the range 
0-6, while the value 7 is attributed to azoic 
samples. The AMBI represent the benthic 
community “health” and its interpretation as 
“pollution or disturbance” classification of 
a particular site and ecological status (sensu 
European Water Framework Directive) is 
given in Table 13.
Last updated list of taxa and calculation 
software, with some graphical function, are 
freely available on Internet at the address: 
http://www.azti.es/. 
Actually, the idea to obtain a biotic index 
from the relative abundances of benthic 
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specialist carnivores and some deposit-
feeding and tube-dwelling polychaetes.
• EGII: species indifferent to enrichment, 
always present in low densities with 
non-significant variations with time 
(from initial state, to slight unbalance). 
These include suspension feeders, less 
selective carnivores and scavengers.
• EGIII: species tolerant to excess organic 
matter enrichment. These species may 
occur under normal conditions, but their 
populations are stimulated by organic 
enrichment (slight unbalance situations). 
They are surface deposit-feeding species, as 
tube-dwelling spionids.
• EGIV: 2nd order opportunistic species (slight 
to pronounced unbalanced situations). 
Mainly small sized polychaetes: subsurface 
deposit-feeders, such as cirratulids.
•EGV: 1st order opportunistic species 
(pronounced unbalanced situations). These 
are deposit-feeders, which proliferate in 
reduced sediments.

Figure 6. Theoretical model, which provides the ordination of soft-bottom macrofauna species into five 
ecological groups, according to their sensitivity to an increasing pollution gradient (Borja et al., 2000).
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invertebrate divided in sensitive groups was 
previously developed by Word in the late ’70 
years (Ferraro et	 al., 1991 and references 
therein). He developed an Infaunal Index for 
the Southern California coast based on the 
relative proportion of 53 invertebrate divided 
in four groups (I: pollution-sensitive; II: 
slightly pollution-tolerant; III: moderately 
pollution-tolerant; IV: pollution-tolerant).
The AMBI index was applied to several 
ecosystems, from coastal continental shelf 
to estuaries and coastal lagoons, along 
European coast (Atlantic Ocean, Baltic Sea, 
Mediterranean Sea, North Sea, and Norwegian 
Sea), even in Hong Kong, Uruguay and Brazil, 
and toward different impact source, including 
drill cutting discharges, submarine outfalls, 
harbour and dyke construction, heavy metal 
inputs, eutrophication, engineering works, 
diffuse pollutant inputs, recovery in polluted 
systems under the impact of sewerage 
schemes, dredging processes, mud disposal, 
sand extraction, oil spills, fish farming (Borja 
et	al., 2000; Borja et	al., 2003; Borja et	al., 
2003; Muxika et	al., 2003; Ponti et	al., 2003; 
Gorostiaga et	 al., 2004; Ponti and Abbiati, 
2004; Salas et	al., 2004; Muniz et	al., 2005; 
Muxika et	 al., 2005 and references therein). 
A long debate on the application of this 
index in the context of the European Water 
Framework Directive was published on the 
scientific journals (Borja et	 al., 2004; Borja 

et	 al., 2004; Borja et	 al., 2004; Simboura, 
2004; Dauvin, 2005). Main advantages of 
this index are that it is simple to calculate 
and interpret, it does not require any local 
and/or simultaneous reference site, and 
moreover it provides a series of continuous 
values suitable for statistical analyses.
The main critic to this index is that the 
sensibilities of the taxa are based on expertise 
judgements rather than experimental 
evidence. Furthermore the sensitivity and 
recoverability of a species toward different 
physical chemical and biological factors (e.g. 
substratum loss, change in hydrodynamics 
and sedimentation, turbidity, temperature, 
salinity, oxygenation, desiccation, heavy 
metal, hydrocarbon, radionuclide, nutrient, 
introduction of microbial pathogens/parasites, 
introduction of non-native species, removal 
of species, etc.) can not be generalised in an 
univocal group (Tyler-Walters et	 al., 2001; 
Ponti et	al., 2003; Ponti and Abbiati, 2004). 
In practice when the assemblages include 
several species, which are assigned to the 
ecological groups, misclassification could 
be compensated each other and therefore the 
index appeared more robust. As suggested by 
the authors, when the percentage of taxa that 
are not assigned is high (>20%), the results 
should be evaluated with care but if it exceed 
50%, the AMBI should not be used (Borja 
and Muxika, 2005).

Biotic coefficient 
  

Dominating 
ecological group  

Benthic community 
health  

Site disturbance 
classification  

Ecological 
status  

0.0 < AMBI ≤ 0.2 I Normal  Undisturbed  High status  
0.2 < AMBI ≤ 1.2   Impoverished    
1.2 < AMBI ≤ 3.3  III Unbalanced  Slightly disturbed  Good status  
3.3 < AMBI ≤ 4.3   Transitional to pollution  Moderately disturbed  Moderate status  
4.3 < AMBI ≤ 5.0  IV-V Polluted   Poor status  
5.0 < AMBI ≤ 5.5   Transitional to heavy pollution  Heavily disturbed   
5.5 < AMBI ≤ 6.0  V Heavy polluted    Bad status  
6.0 < AMBI ≤ 7.0  Azoic Azoic  Extremely disturbed   
	
  

Table 13 - Summary of the AMBI values and their equivalences (from Muxika et al., 2005).
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Although azoic situation is theoretically 
considered, the robustness of the index could 
be reduced when only a very low number 
of taxa (1–3) and/or individuals (<3 per 
replicate) are found in a sample (Borja and 
Muxika, 2005). Unfortunately, situations with 
very low number of taxa and/or individuals 
are fairly common in some particular impacts 
(e.g. sand extraction, dredged sediment 
dumping, fish trawling, etc.) and even in 
some naturally-stressed locations (e.g. 
naturally organic matter enriched bottoms, 
Zostera beds producing dead leaves, inner 
parts of estuaries with low-salinity, etc.). 
In some cases naturally organic matter 
enriched bottoms can lead to a natural 
increase in opportunistic species and, 
subsequently, to an increase in the AMBI 
values, providing “wrong” classifications. 
In order to minimise misclassification 
problems and obtains a more comprehensive 
view of the benthic community, the authors 
recommend the use the AMBI together 
with other metrics, such as diversity and 
richness, following a multimetric approach, 
especially for the purpose of “Ecological 
Status” definition under the European Water 
Framework Directive.
Guidelines suggested by the authors (Borja 
and Muxika, 2005) are:
• AMBI index is designed only for use with 
soft-bottom communities, never use it with 
hard-bottom substrata data and remove 
from the dataset all non-soft sediment taxa 
(e.g. Nudibranchia) or epifaunal taxa (e.g. 
Bryozoa).
• remove from the dataset all non-benthic 
invertebrate taxa (e.g. fish, algae, and 
planktonic taxa);
• remove all freshwater taxa (e.g. Cladocera);
• in salinity >10 psu, remove insecta;
• remove juveniles, when the species are not 
identified;
• certain taxa should be grouped together 
(e.g. species of the same genus not well 
recognised);

• never use high taxonomic levels (e.g. 
Bivalvia, Gastropoda), except those included 
in the taxa list (e.g. Nemertea, etc.);
• use le latest version of the taxa list;
• it is preferable to calculate the AMBI values 
for each of the replicates, then to derive the 
mean value;
• never apply AMBI automatically, more 
detailed analysis and discussion of the results 
by the experts involved in the assessment is 
recommended.
 
4.9 The BENTIX biotic index
BENTIX index was based on the same 
methodological approach of AMBI (Simboura 
and Zenetos, 2002). 
The ecological groups involved in the 
formula were reduced from five to three. 
In the opinion of the authors this reduction 
should avoid errors in the grouping of the 
species, and reduce effort in calculating 
the index, without at the same time loosing 
its discriminative power or sensitivity. The 
ecological groups were described as:
• EGI: species sensitive to disturbance in 
general. These species corresponds to the 
K-strategy species, with relatively long life, 
slow growth and high biomass (Gray, 1979). 
Also species indifferent to disturbance, 
always present in low densities with non-
significant variations with time are included 
in this group, as they cannot be considered as 
tolerant by any degree.
• EGII: species tolerant to disturbance or 
stress whose populations may respond to 
enrichment or other source of pollution by 
an increase of densities (slight unbalanced 
situations). Also this group includes 
second-order opportunistic species, or late 
successional colonisers with r-strategy: 
species with short life span, fast growth, early 
sexual maturation and larvae throughout the 
year.
• EGIII: this group includes the first 
order opportunistic species (pronounced 
unbalanced situations), pioneers, colonisers, 
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or species tolerant to hypoxia.
Benthic invertebrates are classified into 
ecological groups according to a checklist of 
350 taxa provided by the authors (Simboura 
and Zenetos, 2002). 
The index is calculated by the formula:

 

The BENTIX can produce a series of 
continuous values from 2 to 6, being 0 
when the sediment is azoic. Numeric values 
between 2 and zero are nonexistent in the 
scale because if EGI is zero the BENTIX 
index is 2. A classification system of soft 
bottom macrozoobenthic communities was 
proposed based on the BENTIX index and 
including five levels of ecological quality, as 
required by the European Water Framework 
Directive (Table 14).
BENTIX was already applied to some Greek 
study case in order to meet the EU Water 
Framework Directive (Simboura et	al., 2005).
Similarly to AMBI, BENTIX effectiveness 
could be strongly affected by the degree 
of confidence in the attribution of generic 
sensitivities groups, which does not consider 
the typology of disturbance. Moreover, the 
formula, in practice, joins EGII and EGIII in 
a unique group. That prevents to distinguish 
between the relative abundances of these two 
groups and probably reduced the sensibility 
of the index.

4.10 Benthic Response Index (BRI) for 
southern California continental shelf
Although the Benthic Response Index (BRI) 
for southern California mainland shelf was 
not developed for transitional waters deserve 
attention. It is based on species sensitive/
tolerance, which was determined based upon 
their distribution of abundance along the 
pollution gradient between impaired and 
reference sites (Bergen et	 al., 2000; Smith 
et	 al., 2001). Reference condition was 
established as the index value in samples 
taken distant from areas of anthropogenic 
activity and for which no contaminants 
exceeded the effects range low (ERL; Long 
et	al., 1995) screening levels. Four response 
levels were established as the index values 
at which key community attributes were lost. 
Pollution tolerance scores to each species 
were assigned in an objective way, after a 
multivariate analysis and on the position take 
along the gradient defined in the ordination 
space.
The index formula for each sample is:
 

where n is the number of species for sample, 
pi is the pollution tolerance score for species 
i, and ai is the abundance of ith species. 
Species in the sample without pi values are 
ignored. The authors provide a list of 519 taxa 
with scores differentiated for shallow, middle 
and deep waters (http://www.esapubs.org/
a rch ive /app l /A011 /014 /append ix -B .h tm) .

4.11 Multimetric Benthic Indices of Biotic 
Integrity (B-IBI family)
The benthic indices of biotic integrity could 
be considered as a family of multimetric 
indices that evaluates the ecological health by 
comparing values of key benthic community 
attributes to reference values expected under 

 
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%%2%6 IIIIII EGEGEGBENTIX 


Pollution  
Classification BENTIX 

Ecological 
Quality 
Status 

Normal/Pristine  4.5 - 6.0 High 
Slightly polluted 3.5 - 4.5 Good 
Moderately polluted  2.5 - 3.5 Moderate 
Heavily polluted  2.0 - 2.5 Poor 
Azoic  0 Bad 

	
  

Tabel 14 - Classification scheme of soft bottom 
benthic habitats.
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non-degraded conditions in similar habitat 
types. It is therefore a measure of deviation 
from reference conditions. This approach 
was first introduced for freshwater fish 
assemblages and is frequently referred as 
Index of Biotic Integrity (IBI; Karr, 1981; 
Karr et	al., 1986). 
The progenitors developed for coastal 
benthic assemblages were the Benthic 
Index of Environmental Condition of Gulf 
of Mexico Estuaries (Engle et	 al., 1994) 
and the Chesapeake Bay Benthic Index of 
Biotic Integrity (generally known as B-IBI; 
Weisberg et	al., 1997). 
Afterward several variants were proposed for 
other northeastern American regions (Fig. 7). 
Most of these indices were developed within 
the US EPA’s Environmental Monitoring and 
Assessment Program (EMAP) in order to 
establish water quality criteria and standards 
under the American Clean Water Act (CWA), 
to protect aquatic life from the effects of 
pollution (Gibson et	al., 2000).
 
4.11.1	 Benthic	 Index	 of	 Environmental	
Condition	of	Gulf	of	Mexico	Estuaries
The Benthic Index of Environmental 
Condition of Gulf of Mexico Estuaries in 
its first version was a linear combination 
of three metrics: Shannon’s diversity index, 
the proportion of total benthic abundance as 
tubificid oligochaetes and the proportion of 
total benthic abundance as bivalve molluscs 
(Engle et	al., 1994). 
Afterwards a refinement was proposed, 
including the abundances of capitellid 
polychaetes and amphipods as additional 
metrics; Engle and Summers, 1999; Engle, 
2000). 
The final formula, obtained after a selection 
of several metrics using the discriminant 
analysis, is:
 

where ED is the proportion of expected 
diversity, T is the mean abundance of tubificid 
oligochaetes, C the percent of capitellid 
polychaetes, B the percent of bivalves, and A 
the percent of amphipods. The ED is based on 
the expected Shannon’s diversity index (log 2 
based) calculated in function of the salinity. 
The calculation procedure, based on three 
replicate samples, requires transforming and 
standardising all the metrics before the DS 
calculation. Finally the Engle’s B-IBI was 
obtained normalising between 0 and 10 the 
DS considering the minimum and the range 
observed in the original test data used to 
develop the index.
Details on the calculation method were 
provided in Engle (2000). Values less of 3 
represented degraded sites while almost 
pristine sites had values greater then 5. It 
was applied for several year to Louisianian 
and Florida estuaries, also comparing the 
results to other biological measures, like fish 
tissue contaminants (Macauley et	 al., 1999; 
Macauley et	al., 2002).
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Figure 7 - Biogeographic province where the 
indices belonging to the B-IBI family were 
developed, within the US EPA’s Environmental 
Monitoring and Assessment Program (EMAP).
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4.11.2	 Chesapeake	 Bay	 Benthic	 Index	 of	
Biotic	Integrity
The Chesapeake Bay Benthic Index of 
Biotic Integrity includes 4 to 7 metrics 
selected separately for each of seven habitat 
typologies, defined on their salinity and 
sediment mud content (tidal freshwater, 
oligohaline, low mesohaline, high mesohaline 
sand, high mesohaline mud, polyhaline sand 
and polyhaline mud; Weisberg et	 al., 1997). 
Metrics used represents measures of species 
diversity, productivity, species composition, 
depth distribution, and trophic composition. 
Shannon’s diversity index, abundance, 
biomass and abundance of “pollution-
indicative” taxa were considered for each 
habitat, while abundance of “pollution-
sensitive” taxa was included in all habitat 
typologies except for tidal freshwaters. 
A list of pollution indicative and sensitive 
taxa were provided (Weisberg et	 al., 1997). 
For each metric a score of 5, 3, or 1 is assigned 
according the corresponding thresholds (see 
table 7 in Weisberg et	al., 1997). 
The B-IBI is obtained by computing the mean 
score across all metrics. Assemblages with 
an average score less than 3 are considered 
stressed. 
The B-IBI applied in the Chesapeake Bay 
appeared sensitive, stable, robust, and 
statistically sound (Alden et	 al., 2002). 
Afters years of application in monitoring 
programs, a slightly different classification 
range was proposed (Llanso et	al., 2003).
 
4.11.3	 Carolinian	 Benthic	 Index	 of	 Biotic	
Integrity
The Carolinian Benthic Index of Biotic 
Integrity was derived for the south-eastern 
USA estuaries in the same way of the 
original Chesapeake Bay B-IBI (Van Dolah 
et	 al., 1999). This variant considered only 
four metrics, the same for each habitat 
typology (mean number of taxa for 0.04 m2, 
mean abundance for 0.04 m2, dominance as 
100 minus percent abundance of two most 

dominant taxa and percent sensitive taxa 
grouped at genera or family level), but with 
habitat-specific thresholds.
 
4.11.4	 Benthic	Index	of	Estuarine	Condition	
for	the	Virginian	Biogeographic	Province
The Benthic Index of Estuarine Condition 
for the Virginian Biogeographic Province 
consisted of three metrics selected among 
forty-eight candidate metrics by discriminant 
analysis (Paul et	 al., 2001): salinity-
normalized Gleason’s D diversity index 
(SNGD), abundances of spionid polychaetes 
(SA) and salinity-normalized tubificid 
oligochaetes (SNTA). The index is calculated 
through the formula:
 

where   

GD is Gleason’s D diversity index 
(D= S/lnN) based on infauna and epifauna, 
SB is the bottom salinity, TA the tubificid 
abundance, SA the spionid abundance, and   
(for more details see Paul et	 al., 2001).
Reference sites shown index values >0 while 
degraded sites had values ≤ 0. Applying 
this index, the Salinity, as habitat typology 
descriptor, is directly included in the formula. 
An adjusted formula for cases where there fewer 
than three replicate grabs was also provided.
 
4.11.5	 Eaton’s	 biocriteria	 for	 North	
Carolina	Estuarine	Waters	
The Eaton’s (or Farrell’s) Biocriteria for 
North Carolina Estuarine Waters (Eaton, 
2001) is a multimetric index that combine the 
total taxa richness (TT), the amphipod and 
caridean shrimp taxa richness (A&C) and a 
biotic index based on species sensitivities 
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(EBI). While the previous described B-IBI 
indices are based on a quantitative box-corer 
or grabs sampler, this method required a D 
frame dip net with a 600-700 μm mesh bag, 
and a continuously sweep for 10 min. The 
fauna are semi-quantitatively sorted in five 
classes of abundance. The EBI is calculated 
from the individual taxa sensitivity values 
(according to the list provided by the authors 
and ranging from 1 to 5) with the formula:
 

where SVi is the sensitivity value of the ith 
taxa, Ni the semi-quantitative abundance 
of the ith taxa (recorded as 1, 3, 10, 30 or 
100), and N is the semi-quantitative sum of 
individuals in the sample. The classification 
of the impacts are attributed summing the 
score [1-5] assigned to TT, A&C and EBI 
according the thresholds separately provided 
for polyhaline (S ≥ 35 psu) and mesohaline 
waters (8 to 20 psu), and two bonus points 
for some habitat characteristics.
 
4.11.6	 Multimetric	 benthic	 assessment	 in	
San	Francisco	Estuary
The multimetric assessment methods 
proposed for San Francisco Estuary 
considered total number of taxa, total 
abundances, oligochaete abundances, number 
of molluscan taxa, number of amphipod 
taxa, and Capitella capitata and Streblospio 
benedicti abundances (Thompson and 
Lowe, 2004). Assemblages were divided 
according to two habitat typologies based on 
salinity range: polyhaline and mesohaline.             
The “assessment value” (AV) of benthic 
health is obtained as number of metrics that 
exceeded the reference range values (Table 
15). Samples with two indicators outside their 
reference ranges (AV = 2) were considered to 
be slightly impacted, samples with AV = 3 were 
considered to be moderately impacted, and 
samples with AV = 4 or 5 were considered to 

be severely impacted. Selection of candidate 
metrics was based on the literature 
concerning similar habitat typologies, 
while the definition of reference range 
values (min and max) were obtained from 
local “reference” samples. There are not 
locations free of sediment contamination in 
the estuary, sediment toxicity is widespread 
and persistent, and moreover no other 
estuaries along the central California coast 
are similar to the San Francisco Estuary 
enough to be suitable as reference locations. 
Therefore a screening procedure was used 
to identify benthic samples that showed no 
evidence of benthic impacts based on co-
occurring sediment toxicity data and on 
expected species composition at reference 
benthic conditions as reported in the literature 
from other areas (Thompson and Lowe, 2004).
There are some important constrain that 
limits the applicability of all the B-IBI 
family indices. Firstly they are explicitly 
developed for specific biogeographic regions 
considering local reference conditions. 
Application of similar approach for derive 
equivalent B-IBI in other regions required 
the presence of some local reference sites. 
Within all variant of the B-IBI, an important 
role is attributed to “pollution-indicative” 
and/or “pollution-sensitive” taxa, based on 

 Polyhaline Mesohaline 
 Min Max Min Max 
No. taxa  21 66 6 18 
Total abundance  97 2'931 20 1'090 
No. amphipod taxa  2 11    
Molluscan taxa    1 4 
Oligochaete abundance    0 47 
Capitella capitata  0 13    
Streblospio benedicti    0 38 

	
  

Table 15 - Reference ranges for benthic assessment 
indicators in two benthic assemblages in the San 
Francisco Estuary, divided for polyhaline and 
mesohaline waters (Thompson and Lowe, 2004).

N
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local checklists or to the unlikely general 
assumption that higher taxonomic groups, 
like tubific oligochaetes, capitellid or spionid 
polychaetes, and amphipods or caridean 
shrimps have homogeneous and consistent 
response to any anthropogenic disturb.

4.12 Forthcoming indices
Some new benthic biotic indices oriented to 
transitional waters were recently presented in 
national and international conferences held 
in Europe. Two of them are already under 
field evaluation and promise to be available 
soon.
 
4.12.1	 Fuzzy	 INdex	 of	 Ecosystem	 integrity	
(FINE)
Fuzzy INdex of Ecosystem integrity (FINE) is 
an end-user oriented multimetric biotic index 
based on the “fuzzy-logic” and specifically 
developed for transitional ecosystems 
(Mistri et	al., 2005). FINE include functional 
and structural descriptor of the ecosystem 
with particular emphasis to macrobenthic 
components. Fuzzy logic basically consists in 
a way to combine the various interpretations 
of descriptors that overcome the limits of 
simple linear combination of scores. This 
approach can easily tolerate imprecision, 
allows linguistic reasoning and manage 
qualitative information (Silvert, 2000). In the 
proposed index there are 2032 classification 
rules that finally provide an easily readable 
interpretation of the ecosystem health.
 4.12.2	 Index	of	Size	Distribution	(ISD)
The Index of Size Distribution (ISD) is a 
non taxonomic biotic index proposed by 
Reizopoulou and Nicolaidou (Reizopoulou 
and Nicolaidou. A., 2004; Reizopoulou and 
Nicolaidou. A., in press). It is based on the 
concepts that individual sizes are an intrinsic 
characteristic of the communities and could be 
expression of selective pressures or external 
environmental forces. Generally mean sizes 
decreased in polluted environments.
Macrobenthic assemblages were sorted in 

geometric size classes (0.1, 0.3, 0.7, 1.5, 
3.1, 6.3, 12.7, 25.5, 51.1, 102.3, 204.7, 409.5 
mm). ISD is calculated as skewness of the 
size frequency distribution. A classification 
of ecological status is obtained from the 
threshold provided in table 16.

5 Benthic macrophyte
5.1 Ecological Evaluation Index (EEI)
Ecological Evaluation Index (EEI) was 
proposed by Orfanidis and colleagues 
(Orfanidis et	 al., 2001, 2003). It was 
designed to estimate the ecological status 
classes (ESC) of marine benthic macrophytes 
of transitional and coastal waters. It is based 
on the well-known pattern that chronic 
anthropogenic stress, e.g. eutrophication, 
pollution, shifts the ecosystem from pristine 
where phanerogams is dominant to degraded 
state, where opportunistic species through 
rapid growth and recruitment is dominant. 
This pattern can be explained from the 
species competition abilities under abundant 
resource conditions and is in accordance to 
r- and K-selection theory. 
The EEI evaluates shifts in marine 
ecosystem by classifying marine benthic 
macrophytes from their life-cycle strategy in 
two Ecological State Groups (ESGI = most 
K-selected species, ESGII = most r-selected 
species). This classification scheme is based 
on the functional-form model of Littler 
& Littler (1980). ESGI includes seaweed 
species with a thick or calcareous thallus, 
low growth rates and long life cycles (late 
successionals), whereas the ESGII includes 
sheet-like and filamentous seaweed species 
with high growth rates and short life cycles 

Ecological status ISD 
 High ISD < 1 
 Good 1 < ISD < 2 
 Sufficient 2 < ISD< 3 
 Poor 3 < ISD < 4 
 Very bad 4 < ISD 

	
  

Table 16 - ISD Interpretation.



© 2009 University of Salento - SIBA http://siba-ese.unisalento.it 66

TWB 3 (2009), n.3 	 M.	Ponti,	M.	R.	Vadrucci,	S.	Orfanidis,	M.	Pinna

(opportunistic). All seagrasses are included 
in the first group, whereas Cyanophyceae and 
species with a coarsely branched thallus are 
included in the second group. The evaluation 
of five ESC needs a cross comparison in a 
matrix of the ESGs and a numerical scoring 
system (Fig. 8). 
In order to evaluate the spatial scale-
dependent ESC of the studied lagoon, the 
area-weighted value was calculated. For this 
purpose, the score of each site was multiplied 
by the percentage of the lagoon area for 
which is considered to be representative and 
the products were summed (Table 17). EEI 
values higher than 6 indicate sustainable 
ecosystems of good or high ESC, whereas 
EEI values lower than 6 indicate that the 
ecosystems should be restored to a higher 
ESC (Table 17).
For WFD purpose the biological parameters 
should be expressed as a numerical value 
between 0 (bad ES) and 1 (high ES) resulting 
rom the ratio of the observed value versus 
the value of the same metric under reference 
conditions (Ecological Quality Ratio- EQR). 
The principal of EQR for the case of 
the EEI could be applied following 
the formula (Panayotidis et	 al., 2004):

EEIEQR = 1.25x(EEIvalue/RCvalue)-0.25
where RCvalue = 10

The EEI was designed to cover the 
prerequisites of European WFD and to 
offer to water managers worldwide a 
tool for comparing, ranking and setting 

management priorities at different spatial 
levels without a demand for specialized 
knowledge in seaweed or seagrass taxonomy.
EEI was successfully used as status index in 
five Greek lagoons and the comparison with 
diversity indices, considered inappropriate 
for ecological assessment, is shown in Fig.9. 
These lagoons are located in the Eastern 
Macedonia & Thrace region, where one 
of the most extensive Greek fresh water-
estuarine systems exists. Nestos River 
lagoons (Vassova, Eratino, Agiasma, 
Keramoti) typically consist of a shallow 
(up to 1.5 m) area and several artificially 
constructed channels (up to 3 m depth). 
The fresh water sources of the lagoons are 

Figure 8. A matrix based on the mean abundance 
(%) of ESG’s to determine the ecological status 
classes of transitional and coastal waters. Each 
ecological status class corresponds to a numerical 
value.

Classification of anthropogenic 
stress 

Ecological status classes Ecological Evaluation-
EEI index range 

Management 
target 

Normal/Pristine High 10 < EEI < 8 Sustainable 
Slightly stressed, transitional Good 8 < EEI < 6 Sustainable 
Moderately stressed Moderate 6 < EEI < 4 Restoration 
Heavily stressed  Low 4 < EEI < 2 Restoration 
Before azoic  Bad 2 Restoration 

	
  

Table 17 - Classification scheme of transitional and coastal waters based on the Ecological Evaluation Index 
(EEI).
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mainly agricultural run-offs coming in from 
surrounding drainage channels and the old 
bed of the Nestos River. The Fanari lagoon 
consists of a uniform shallow area (up to 2 m 
depth) having a narrow connection to the sea. 
The main fresh water sources of the lagoon 
are the autumn-winter rainfalls. All lagoons 
are used for extensive fish cultivation.
 Since EEI typology is based on ecological 
processes it can also predict restoration 
potentialities. According to the model, 
a restoration goal of a degraded aquatic 
environment could include an improvement 
of hydrological and ecological conditions to 
allow growth of seagrasses in the lagoons, 
e.g. Ruppia, Zostera. The value of these 
communities is high because they support 
many ecosystem services, e.g. sustain 
biodiversity, maintain fish habitat, offer 
detritus to the trophic chain, maintain water 
quality, stabilize sediment and control 
erosion. 
The index should be calibrated against key 
abiotic factors of water column and sediment 
at different spatial scales from lagoon to 
catchments to biogeographical region.

 5.2 Rhodophyceae/Chlorophyceae (R/C) and 
Chlorophyceae/Phaeophyceae (C/P)
These two indices were proposed by Sfriso 
and colleagues (Sfriso et	al., 2002) to estimate 
trophic levels of shallow ecosystems like 
lagoons, inhabited by benthic macrophytes.
The indices are based on Rhodophyceae/
Chlorophyceae (R/C) ratio and on 
Chlorophyceae/Phaeophyceae (C/P) ratio. 
As the trophic state of the lagoon increases 
the R/C ratio decreases and the C/P ratio 
increases.
They are empirical ratios without any obvious 
ecological base. They have been successfully 
used to estimate the trophic level in the 
Venice lagoon. Since taxonomical status of 
seaweed species in the Mediterranean lagoons 
seems to be not very well explored additional 
data are needed to assess applicability of this 
classification scheme in the Mediterranean 
coastal lagoons.
 
5.3 Taxonomic diversity indices
Two indices of taxonomic distinctness have 
been proposed by Clarke & Warwick (Clarke 
and Warwick, 1998; Clarke and Warwick, 
2001) using presence/absence data: 
1. Average taxonomic distinctness (Δ+): 

average taxonomic relatedness of 
individuals.

2. Variation in average taxonomic 
distinctness (Λ+): the evenness of the 
distribution of taxa across the hierarchical 
taxonomic tree.

Taxonomic distinctness indices were designed 
(Warwick and Clarke, 1995) to measure 
biodiversity by providing the relatedness or 
organisms within a sample. These indices 
have been shown to be independent of 
sample size or sample effort and they have 
been related to functional diversity and 
to environmental impact.The theoretical 
basis is that under anthropogenic stress 
first disappear the species poor-higher taxa 
leaving an assemblage comprised of groups 
of relatively closely related species. This 

Figure 9. Ecological Evaluation Index (EEI) in 
comparison to diversity indices in five Greek 
lagoons of Eastern Macedonia & Thrace regions. 
High EEI values correspond to the less affected 
lagoons. Line bars indicate 95% confidence 
intervals.
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effect tend to decrease the average taxonomic 
distinctness and to decrease the variability of 
relatedness of species in the taxonomic tree.
Average taxonomic distinctness:
 

Variation in average taxonomic distinctness:
  

where  

The taxonomic distinctness indices from 
benthic macrophytes assemblages have been 
tested in two different case studies one from 
the coastal ecosystem of Bay of Fundy, 
Canada (Bates et	al., 2005), and one from the 

lagoonal ecosystem of Languedoc-Roussillon 
region, France (Mouillot et	 al., 2005a). 
In both case studies it was indicated a low 
if any efficiency of the indices to indicate 
anthropogenic stress in benthic macrophytes 
assemblages. Bates et	 al. (2005) attributed 
this result to three basic reasons: 
1. the filamentous and leaf-like species 

of seaweeds, e.g. Ulva, Porphyra, 
Ectocarpus, that get advantage in 
anthropogenic stressed environments 
belong in phylogenetically distant clades. 
Then samples from these sites, instead 
of what is expected, give higher index 
scores than the less impacted sites; 

2. anthropogenic stress mainly shifts the 
dominance from perennial to short-lived 
species without, except in extreme cases, 
to completely diminish the former;

3. since diversity of certain red algal orders 
like Ceramiales and Gigartinales is high, 

Figure 10. A classification scheme of Mouillot	et	al. (2005a) based on taxonomic diversity indices. Envi-
ronmental variability is related to the variation of environmental factors such as salinity or temperature. 
Human impact is mainly related to aquaculture.
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there is always a high probability species 
form that orders to dominate in an 
assemblage, lowering the indices scores.

A significant highest Δ+ value in one of the 
less impacted lagoons (Bages-Sigean) and the 
significant highest Λ+ value (not regarding 
exotic species) in the most salinity variable 
lagoon (Salse-Leucate) allowed Mouillot et	
al. (2005a) to suggest a new classification of 
the lagoons system (Fig. 10). In this system 
the environmental variability of factors 
such as salinity was related to variation 
in taxonomic distinctness and the human 
activities, and eutrophication levels were 
related to average taxonomic distinctness. 
Obviously, additional data are needed to 
assess applicability of this classification 
scheme.

5.4 IFREMER’s classification scheme
This classification scheme was proposed 
by Souchu and colleagues from French 
Research Institute for Exploitation of the 
Sea (IFREMER; Souchu et	 al., 2000). It 
was designed to estimate the eutrophication 
levels of the French Mediterranean lagoons 
by using benthic macrophytes as indicators. 
The macrophyte species were classified in 
five groups in accordance to their life cycle, 
functional performance and the associated 
environmental quality: climax, drifting, 
opportunistic, exotic and freshwater species. 
The first group comprises the phanerogams 
Ruppia and Zostera and several non-blooming 
macroalgae, which are considered as 
representative of non eutrophied high quality 
conditions. The second group comprises the 
detached seaweeds, e.g. Gracilaria, which 
are transported by waves and currents and 
are considered as representative of preserved 
or moderately polluted conditions. The third 
and forth groups comprise the bloom forming 
green algae, e.g. Ulva and Cladophora, and 
the exotic species, respectively, which are 
considered as representatives of bad quality 
conditions. The fifth group comprises the 

fresh water genus Potamogeton, which is 
considered as representative of fresh water 
influenced lagoon sites of high water quality. 
Souchu et	 al. (2000) accepts that in high 
quality status sites the macrophyte community 
is dominated by climax species, mainly 
phanerogams, with a minor existence of 
opportunistic green seaweeds. In good status 
sites the climax species are still the dominant 
and the opportunistic green macroalgae can 
only locally proliferate. The moderate status 
sites are characterized by obvious episodes 
of macroalgal blooms, anoxic crises and 
biodiversity loss. In poor quality sites the 
macroalgal blooms are persistent in cost of 
seagrasses where disappear, whereas in bad 
quality sites beside the persistent macroalgal 
blooms there is strong degradation and 
frequent dystrophic crises.
The concepts of IFREMER’s and Ecological 
Evaluation Index (EEI; Orfanidis et	al., 2001, 
2003) classification schemes are very similar 
accepting the dominance of phanerogams as 
indicator of high water quality conditions 
and the dominance of opportunistic, mainly 
green algae, as indicators of degraded 
conditions. However, there are also 
discrepancies regarding the criteria used to 
classify benthic macrophytes in different 
ecological groups. Whereas the ecological 
groups of EEI (ESG I, II) are in accordance to 
r- and K- selection theory and to functional-
form model of Littler & Littler (1980), the 
ecological groups in IFREMER’s scheme 
built in a more empirical basis without to 
follow any obvious ecological theory-model. 
For example, the group of climax species 
comprises the phanerogams together with 
genera like Bryopsis, Scytosiphon, Dictyota, 
Ceramium, Dasya etc. that follows very 
different life-cycle strategies and having very 
different functional roles in the ecosystem. 
Drifting seaweeds in the lagoons can be also 
taxa being typical of climax, like Cystoseira, 
species. However, in the IFREMER’s 
scheme Ulva and Gracilaria	were classified 
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in different groups, whereas in EEI, even 
provisionally, these two species were grouped 
together. Although both Ulva	and Gracilaria 
are common bloom-forming species in 
lagoon ecosystems the species of Ulva rather 
indicates worst eutrophicated conditions. 
Obviously additional knowledge is needed in 
ecosystemic as well as in ecophysiological 
levels to further improves and specifies both 
classification approaches. In IFREMER’s 
scheme a numerically improving of 
assessment approach is also needed. 

5.5 Specific macrophyte exergy index
This holistic thermodynamic indicator 
was proposed by Jørgensen and colleagues 
(Jørgensen et	 al., 2005a) where as exergy is 
defined “the amount of work a system can 
perform when it is brought into equilibrium 
with its environment”. Exergy is the energy 
that can be utilized for doing work opposite 
the heat released at the temperature of the 
environment that cannot be utilized to do 
work (Jørgensen, 2002). Specific exergy 
(Exsp) is the exergy/biomass and is generally 
considered as a measure of the information 
contains an organism:

Specific exergy  

where β is the genetic information, ct is the 
total biomass concentration and ci is the 
biomass of component i including inorganic 
matter available for biomass to grow. 
In healthy ecosystems the Exsp is high due to 
dominance of K-selected long-lived life forms 
with generally high information content per 
unit biomass, i.e. high β-values. By contrast 
in degraded ecosystems the Exsp is low 
due to dominance of r-selected ephemeral 
or opportunistic species with generally low 
β-values. 
Exergy and Exsp have been successfully 
applied as ecological indicators in fresh 

(Xu et	 al., 1999; Silow and In-Hye, 2004), 
transitional (Marques et	 al., 1997, Marques 
et	al., 1998, Marques et	al., 2003; Jørgensen, 
2002; Salas et	 al., 2005) and coastal 
ecosystems (Jørgensen, 2002). 
Macrophyte Exsp was recently used to assess 
ecosystem health of several Mediterranean 
French lagoons (Austoni et	 al., 2006). 
By using biomass data they successfully 
estimated Exsp of different ecological 
status classes in accordance to IFREMER 
classification scheme (Souchu et	 al., 2000). 
The poor and bad ecological status classes 
were not statistically different with β-values 
of 96±16 and 113±45, respectively. The 
β-values of moderate ecological status class 
(195±58) were approximately twice as high 
as the bad and poor ecological status classes 
and significant lower than the good (347±2) 
and high (534±100) classes. 
An estimation of macrophyte β-values 
of common taxa in EEI, IFREMER’s 
classification schemes succeeded to 
statistically confirm the ecological 
grouping classification, however with 
several discrepancies (Austoni et	 al., 2006). 
Although K-selected species seems to have 
bigger genomes than r-selected species 
and therefore higher β-values, the highest 
reported β-values regard the multinucleate 
Siphonocladales, like Valonia	 utricularis	
(1874), V. aegagropila (592), with some 
of them being characteristic opportunistic 
taxa, like Cladophora	 prolifera (790), C. 
pellucida (330), Codium	fragile (2334). Late 
successional taxa like Ruppia	cirrhosa (356), 
Zostera	 noltii (520) and Z. marina (422) 
showed lower or similar β-values. 
Very close β-values of Gracilaria (132) 
and Ulva (100) taxa seem to justify the 
classification of both genera in the same 
ecological group in EEI scheme. Since 
macrophyte β-values are species-specific any 
advantage to doubtful taxonomical status of 
seaweed species in the Mediterranean lagoons 
regarding sibling and cryptic taxa, as well as 
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geographical ecotypes, could improve the 
success of Exsp holistic approach to assess a 
macrophyte-based ecological quality status.
 
6 Phytoplankton
6.1 Diversity indices
6.1.1	Species	Richness	and	abundance
Species richness and abundance are generally 
used for describing phytoplankton guild 
structure, as is often done for the benthic 
assemblages (refer to 4.1). The most common 
ecological indices used are:
1. Species richness (S). The number of 

phytoplankton species observed;
2. Total number of individuals (N);
3. Margalef ’s species richness (Legendre 

and Legendre, 1983). Given by the 
formula: 

 

4. Menhinick’s index                        
 

5. Odum's index for 1000 individuals
 

These indices are affected by sample size. 
The most common index is the number of 
species. However, it is a non-exhaustive 
measure of the number of species, since it 
depends on the level of precision selected for 
the sample analyses and the concentration of 
phytoplankton cells in the sample.

6.1.2	Heterogeneity
The term heterogeneity was introduced for the 
first time by Good (1953). For many ecologists 
the term is synonymous with diversity. 
However, it combines species richness and 
contribution of species populations within 
the community (evenness).There are many 
heterogeneity indices but the most frequently 

used in studies of phytoplankton ecology are 
Simpson’s index (D; Simpson, 1949)) and 
Shannon’s index (H’; Shannon and Weaver, 
1949). The formulas for calculating these are 
as follows:

Shannon’s index is mainly used to highlight 
the importance of rare species, whereas 
Simpson's index is used to highlight the 
importance of dominant species. The main 
advantages regarding the use of these indices, 
which have ensured their success and their 
frequency of adoption by the scientific 
community, are: 
1. their ease of calculation
2. the fact that they eliminate the problems 

related to sample size and comparison 
of samples from different ecosystems in 
that they are estimated on the basis of the 
relative contribution of each taxa in the 
sample. 

Disadvantages include:
1. The range of values that they present is 

generally very narrow, making it difficult 
to discriminate if the differences are not 
pronounced. 

2. The taxa included in the estimate must all 
be classified at the same taxonomic level. 

 
6.1.3	Evenness
Evenness indicates the distribution of the 
individuals within each species. Evenness 
can be obtained from the Shannon’s index 
by dividing the value of the index by the 
maximum diversity value possible for 
that particular community. This value is 
calculated as ln S, where S is the number 
of species observed in the sample (refer to 
4.1.3).
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6.1.4	Case	study	based	on	the	use	of	diversity	
indices	for	the	evaluation	of	the	trophic	state	
of	marine-coastal	environments.
There are a number of studies in which 
attempts have been made to use diversity 
indices for the evaluation of the trophic state 
of marine-coastal environments. 
The study conducted in the Gulf of Saronicos 
(Kitsiou and Karydis, 2000) is interesting 
because it also attempts a classification into 
trophic categories on the basis of the values 
calculated for a series of diversity indices. 
Specifically, the trophic classes (Table 18) 
were established in relation to the values 
calculated for each index from the median 
value derived from a phytoplankton data 
set obtained from environments that were 
classified a priori as eutrophic, mesotrophic 
or oligotrophic. The values calculated for 
each index are shown below (Table 18).
In a study carried out in the northern Adriatic 
(Vadrucci et	 al., 2003), a comparison of 
four diversity indices showed significant 
variations in values along trophic gradients 
(primary production).

6.2 Functional diversity 
Functional diversity is unrelated to the 
taxonomic characteristics of the species; it 
takes account exclusively of their functional 
and structural characteristics. These 
characteristics determine the presence or 

otherwise of a species within a given 
ecosystem and consequently determine the 
structure of the community. The functional 
approach to the study of phytoplankton 
corporations is based on the fact that the 
structure of the phytoplankton corporations is 
determined by specific functional attributes 
of the species that render them particularly 
fit to survive in given environmental 
conditions Fig. 11). This approach was 
used for the first time by Margalef, who 
identified three functional categories for the 
phytoplankton species (I: r-selected summer 
species, II: mixing tolerant species or vernal 
or autumnal species, III: K selected summer 
species) and analysed their distribution 
within a contingency matrix whose axes 
are represented by trophic availability and 
hydrodynamism. It was taken up again 

Diversity 
Index  

Oligotrophic 
conditions 

Lower limit of 
mesotrophic 
conditions 

Upper limit of 
mesotrophic 
conditions 

Eutrophic 
conditions  

S  12  18  24  
N  4160  31400  188334  
DMg  1.32  1.50  1.89  
DMn  0.19  0.09  0.05  
DOd  3.05  0.15  0.04  
H’  1.91  1.41    
E  0.80  0.68  0.45  
	
  

Table 18 - Eutrophication scale for each of the seven ecological indices.

High 
resource, 
High energy

C High 
resource, Low
energy

R

Low resource, 
High energy

S Void!!!!

Low resource, 
Low energy

D
ecreasing

resources------>

Decreasing energy------>

Figure 11 . The Habitat template and the replica-
tion strategies.
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by Reynolds (1997) who identified three 
replication strategies in the phytoplankton 
corporations, indicated as C, R and S (Table 
19), which were also allocated in a contingency 
matrix whose axes were represented by the 
nutrient availability and light. In this system: 
1. C- are the invasive species, which appear 

in the first phase of the ecological 
succession with good availability of 
nutrients and light. They are small and 
have high replication rates;

2. S- are the le “acquisitive” species; they 
are of large dimensions or form large 
colonies. They are typically K-selected 
and grow slowly even under good trophic 
conditions;

3. R- are species of intermediate dimensions 
that are stress tolerant, managing 
to survive well in highly turbulent    
conditions. They enjoy a competitive  
advantage in conditions characterised     
by high availability of nutrients and low 
availability of light. 

These attributes of the species are in the 
pre-adaptation category and thus tend to be 
quantifiable features of the species, often 
strongly correlated with their morphometric 

characteristics. It is thus possible to 
identify the functional category of a given 
species by verifying its bio-volume, its 
cellular surface area and its maximum 
linear dimension. The habitat-template 
is reconstructed on the basis of certain 
morphometric characteristics (S/V e M/SV). 
The S/V ratio refers to the ratio between 
the surface area and the cellular volume; 
it decreases as cellular volume increases 
whereas the M/SV ratio refers to the ratio 
between the maximum linear dimension of a 
cell and the product of S and V. 
This index represents the distortion of the cell 
with respect to the spherical form, which is 
also an index of its photo-adaptive potential, 
i.e. the capacity of the cell to grow in given 
light conditions (Fig. 12).
However, the use of functional groups as 
phytoplankton descriptors for transitional 
aquatic environments is still a long way off. 
In contrast, many applications can be found 
in freshwater lacustrine systems, where 
various phytoplankton assemblages have 
been identified in association with different 
chemical and physical characteristics of 
lakes (Reynolds, 1997, 2003). However, 

  
Morphometric 

Data 
Functional features Dominance Typical 

representative 

  V S/V Replication  Efficiency in     

  µm3 µm-1 rate  light adsorption     
C-                          
INVASIVE < 103 >0,5 High Intermediate 

After thermal 
stratification  picoplankton 

      
after nutrient 
input nanoplankton 

         
R-
ACCLIMATING > 103 >0,5 High High 

deeply 
circulating Asterionella 

      water layer Fragilaria 
            Tabellaria 
S-                
AQUISITIVE >104 <0,3 Low Low 

Stratified 
system Ceratium sp. 

       Microcystis 
              

	
  

Table 19 - Characteristics of C, R and S species.
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this approach has never been applied to 
transitional aquatic environments. Such 
an application however could provide 
interesting information since it may enable a 
classification of the phytoplankton guilds of 
transitional aquatic environments, by means 
of the association of specific taxonomic 
groupings with particular habitats. 
This is also interesting from the point of 
view of identifying specific communities 
of references for given types of habitat and 
understanding how these may be altered in 
relation to  the presence of environmental 
stresses, including those of an anthropogenic 
nature. This is also based on the assumption 
that although many factors, both biotic and 
abiotic, may influence the structure of a 
phytoplankton community, even a non-expert 
reader of phytoplankton is able to determine 
from what type of environment it was taken, 
specifically if this environment is
• oligotrophic or eutrophic
• deep or shallow
• primarily freshwater or saltwater
• stratified or mixed
It is also possible to specify with a reasonable 
degree of accuracy the time of year when the 
sample was taken.

6.3 The Phytoplankton Index of Biotic 
Integrity (P-IBI)
This index was developed during the 
“Chesapeake Bay Water Quality Monitoring” 
programme (Lacouture et	al., 2006).
Dissolved inorganic nitrogen, orthophosphate 
and Secchi depth were used to characterize 
the conditions of the habitat. Least-impaired 
(reference) habitat conditions have low 
dissolved inorganic nitrogen (DIN) and 
orthophosphate (PO4) concentrations and 
large Secchi depths. Impaired (degraded) 
habitat conditions have high DIN and PO4 
concentrations and small Secchi depths. This 
is an index of the combined type. Thirty 
different metrics were tested for their ability 
to discriminate between least-impaired and 
impaired conditions and twenty of these were 
classified in order to create community index 
at four levels of salinity.  
The metric scoring approach described by 
Karr et	 al. (1986), Weisberg et	 al. (1997), 
Gibson et	 al. (2000), served as a template 
for the phytoplankton metric scoring. 
Scoring is based on the distribution of 
each phytoplankton metric in the reference 
community. An example of pattern of 
variations P-IBI is reported in the Fig. 13.

Figure 12 . The Habitat Template in relation to the morphometric characteristics of the cells.
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6.4 Biotic indices based on diatoms
The protocols for estimating the quality of 
the water based on the use of diatoms are 
now well-developed and their value has been 
recognised on a national and international 
level (Sgro and Johansen, 1998). However, 
they cannot be considered a rapid form of 
technology because of the time required for 
the preparation of the samples and the species 
level analysis. However, as a method it is 
applicable to all types of aquatic ecosystem, 
including transitional environments. The 
details of the assemblages of diatoms 
provide support for investigations of a 
paleo-ecological nature, making it possible 
to perform historic reconstructions of water 
quality. These approaches however should 
be understood as specifically referring not 
to phytoplankton but rather to periphyton, 
i.e. the micro-algal component that lives 
attached to the substrates (sediments, stones, 
etc). The diagnostic attributes attributable to 
diatoms are the following: 
1. They exhibit a broad range of tolerance 

along productivity gradients and 
differentiation in the use of trophic 
resources on the species level;

2. They exhibit a shorter generation time 
than other indicators (about two weeks). 
Therefore they reproduce and respond 
rapidly to environmental changes and are 
able to provide early measurements both 
in the impact evaluation phase and in the 
ecosystem recovery phase. 

3. They are sensitive to changes in the 
concentration of nutrients. Each taxon 
has a specific tolerance optimum for 
nutrients such as phosphates and nitrogen, 
which is also quantifiable. 

4. They respond rapidly to eutrophication. 
Since diatoms are photo-autotrophic 
organisms, their growth is heavily 
influenced by the concentration of 
nutrients and the availability of light. 

5. Their speed of migration is very high and 
the lack of physical dispersion guarantees 
that there is a brief lag-time between 
perturbation and response.

 

Figure 13 . Pattern of variation of P-IBI in Chesapeake Bay.
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6. The diatoms' frustules remain in the 
sediments for an extremely long time. 
For this reason, sediment box cores can 
provide details on the changes in the 
quality of the waters above. This attribute 
alone is of great importance, since it 
concerns not only research into the 
reference conditions but it may also be 
important for research into the variations 
linked to changes in the climate or in 
the condition of the system before the 
development of anthropogenic activities. 

7. The taxonomy of diatoms is well 
documented. The identification of 
the species is based entirely on the 
morphology of the frustules.

 
6.4.1	Trophic	Diatom	Index	(TDI)
The TDI is used as an indicator of the trophic 
state of impacted rivers but it has also been 
applied to freshwater lakes. This index was 
developed by comparing levels of reactive 
phosphorous with the frequency of certain 
diatom species. The sensitivity value of the 
species is shown in Table 20.
The index is calculated using the following 
formula:
 

where: a = the relative abundance of species j 
in a sample, v = the indicator value for species 
j, s = sensitivity to pollution of species j. 
	6.4.2	Lange–Bertalot	(LI)
The index classifies the diatoms into three 
classes: 
• Class 1: tolerant to pollution
• Class 2: less tolerant to pollution
• Class 3: sensitive to pollution.
Used in rivers and lakes, but never applied to 
transitional environments.

 6.4.3	Percentage	of	 Sensitive	 Species	 Index	
(SSI)
This metric is calculated from the proportion 

of sensitive species with respect to the total 
richness of the sample. 
 
6.4.4	 Percentage	 Tolerant	 Species	 Index	
(TSI)
This metric provides information on the 
amount of eutrophication that is associated 
with pollution of the organic type. This 
characteristic enables the TSI to distinguish 
between the effects of phosphorous 
concentration and those of organic pollution 
(BOD) in an aquatic system. The metric is 
calculated from the proportion of tolerant 
species (Table 21) with respect to the total 
number of species observed. 

6.4.5	Generic	Diatom	Index	(GDI)
This index makes it possible to determine the 
quality of the water directly from the genera. 
Good results have been obtained from the 
application of this index in France.  The GDI 
is calculated using the same formula as the 
TDI: 

 

where a = the relative abundance of the genus 
j in the sample, v = the indicator value and s 
= the sensitivity to pollution of genus j.
The index ranges from 1 to 5, where 1 
corresponds to poor quality status of the 
water and 5 to the optimal status. The list 
of genera with the sensitivity and tolerance 
values is shown in Table 22. 
The GDI is one of the most convenient 
indices used for routine analysis.  Both the 
sampling and the laboratory analyses require 
only half the time needed to estimate the 
other indices. Therefore, one of the biggest 
criticisms of the use of indices based on 
the taxonomic composition of diatoms for 
estimating the quality of waters concerns 
the level of taxonomic knowledge required 
for the identification at the species level. 
Although a few months practice should be 
enough for a technician to acquire this capacity 
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of identification, the level of ability required 
for the application of the GDI is much lower.

7 Fish assemblages and mixed indices
7.1 Taxonomic diversity indices of fish
Other than macrobenthic invertebrates, 
phytoplankton and macrophytes, taxonomic 
diversity indices can be applied to fish 
assemblages. However fish species appeared 
less affected by disturbs than zoobenthic or 
macrophyte species. Since their mobility 
they can avoid local and temporary adverse 
conditions, like extreme temperatures or 
anoxic crises. Thereafter, they can re-colonize 
the lagoon as soon as the environmental 
conditions become more favourable. As a 
consequence the taxonomic diversity indices 
of fish communities seem not suitable for 
assessing the coastal lagoons status or 
discriminate among different levels of human 
impact and eutrophication (Mouillot et	 al., 
2005b).
 
7.2 Estuarine Health Index (EHI)
The Estuarine Health Index (EHI), was 
developed in South Africa (Cooper et	 al., 
1994). It includes fish assemblages among 

the biological aspects. It also includes some 
physical and chemical features related to 
water quality and geomorphology as well 
as an additional aesthetic component. It is 
currently being tested in the UK.
 
7.3 Estuarine Biotic Integrity (EBI)
An index of Estuarine Biotic Integrity 
(EBI), based on fish assemblages and also 
known as “Estuarine Ecological Index”, was 
successfully applied to 16 estuaries on Cape 
Cod and in Buzzards Bay, Massachusetts, 
U.S. (Hughes et	 al., 2002). This EBI is 
a multimetric index that includes fish 
abundance, biomass, total species, species 
dominance, life history, and proportion by 
life zone. The results carried out in north 
America indicated that the EBI is sensitive 
to habitat quality change, although there 
is a time lag between the degradation and 
improvement of water quality, fish habitat, 
and response of the fish community.
 
7.4 Estuarine Fish Index (EFI)
The Estuarine Fish Index (EFI) is 
a multimetric biotic integrity index 
developed for northern European estuaries 
(Adriaenssens et	 al., 2002). The methods 
could be considered an adaptation of the 
original freshwater fish index of biotic 
integrity (IBI; Karr, 1981). EFI is based on 
nine metrics, subdivided in five classes (Table 
23), to express the integrated quality of the 
estuary. Fish are collected using a standard 
net then analysed for species composition 
and relative abundance. It has been applied 
in the upper part of Scheldt estuary where 
freshwater or low salinity waters are present.

Table 20 - Species’ sensitivity values and ecolo-
gical status.

Level  DIP (mg/l) Ecological status 
1 < 0.01 High status 
2 0.01-0.  Good status 
3 0.035-0.1 Moderate status 
4 0.1-0.3 Poor Status 
5 >0.3 Bad status 

	
  

Proportion of tolerant taxa  Interpretation 
<20% Free from organic pollution 
21-40% Some evidence of organic pollution 
41-60% The organic pollution contributes to eutrophication 
>61% Heavily contaminated by organic pollution 

	
  

Table 21 - Indicator range.
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7.5 Other fish indices
A number of other indices based on fish 
assemblages were locally developed in some 
transitional water ecosystem. Unfortunately 
these attempts are unpublished or described 
in technical reports difficult to find. Among 
them the “Fish Health Index” and the 
“Estuarine Fish Importance Rating” are 
briefly reported in Jørgensen et	al., 2005a.
 
7.6 Estuarine QUality and condiTION 
(EQUATION)
The estuarine quality and condition 
(EQUATION) index is an integrated 
multimetric indices based on an aggregation 

of four different components: vulnerability, 
measuring the physical capacity of the system 
to react to change, water quality, which 
examines trophic status and eutrophication 
aspects, sediment quality, which looks 
at the sediments and benthic fauna, and 
trophodynamics, which addresses the quality 
and value of the top levels of the trophic web 
(Ferreira, 2000). For each main component 
there are 5 to 7 metrics to measure or 
indirectly evaluate and their combination 
provide a score (Table 24). 
The EQUATION index for an estuary is 
calculated as the weighted sum of the scores 
obtained for the four main components:

EQUATION = 0.22 vulnerability + 0.26 
water quality + 0.26 sediment quality + 0.26 
trophodynamics

 The index is represented as a number ranging 
from 5 (better) to 1 (worse), following the 
European WFD. The index has been tested 
for a range of estuarine systems, differing in 
hydrology, tidal characteristics and pollutant 
load. Five cases have been chosen, two from 
the USA (San Francisco and Tomales Bay) and 
three from the northern Europe (Carlingford 
Lough, Elbe and Tagus estuaries).
A decision support system (DSS) has 
been developed, integrating the different 
components. The DSS software runs under 
Windows NT/98, and is available for 
download, together with the test systems 
used, from: http://www.ecowin.org/.

Class	
   Metric	
  
species	
  composition	
   total	
  number	
  of	
  species	
  

key	
  species	
  (selected	
  for	
  each	
  habitat)	
  
trophic	
  composition	
   opportunists	
  and	
  specialists	
  
habitat	
  use	
   benthic	
  species	
  
tolerance	
   tolerance	
  scores	
  

tolerant	
  species	
  
ecological	
  guilds	
  with	
  estuarine	
  requirements	
   estuarine	
  resident	
  species	
  

diadromous	
  species	
  
marine	
  juvenile	
  migrant	
  species	
  

	
  

Table 23 -Metrics considered in EFI.

Genera s v 
Achnanthes 5 1 
Amphipleura 5 3 
Amphora 3 2 
Anomoeoneis 5 2 
Asterionella 4 2 
Caloneis 4 1 
Cocconeis 3 1 
Cyclotella 3 1 
Cymbella 5 1 
Denticula 5 3 
Diatoma 4 1 
Gyrosigma 4 3 
Tabellaria 5 1 
Thalassiosira 2 3 

	
  

Table 22 - Diatom genera with sensitivity values 
and indicator value.
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