List of symbols

Number sets and vector spaces

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{N}</td>
<td>set of natural numbers</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>set of integers</td>
</tr>
<tr>
<td>\mathbb{Q}</td>
<td>set of rational numbers</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>set of real numbers</td>
</tr>
<tr>
<td>\mathbb{C}</td>
<td>set of complex numbers</td>
</tr>
<tr>
<td>\mathbb{R}^n</td>
<td>set of all real n-tuples</td>
</tr>
<tr>
<td>\mathbb{S}^{n-1}</td>
<td>unit sphere of \mathbb{R}^n</td>
</tr>
<tr>
<td>\mathbb{R}_+^n</td>
<td>set of all real n-tuples with non-negative coordinates</td>
</tr>
<tr>
<td>\mathbb{C}^n</td>
<td>set of all complex n-tuples</td>
</tr>
<tr>
<td>$a \land b, a \lor b$</td>
<td>minimum and maximum of a and b</td>
</tr>
<tr>
<td>$</td>
<td>\alpha</td>
</tr>
<tr>
<td>Re $\lambda, \text{Im} \lambda$</td>
<td>real and imaginary part of $\lambda \in \mathbb{C}$</td>
</tr>
<tr>
<td>$#E$</td>
<td>cardinality of the set E</td>
</tr>
</tbody>
</table>

Topological and metric space notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>topological closure of E</td>
</tr>
<tr>
<td>∂E</td>
<td>topological boundary of E</td>
</tr>
<tr>
<td>E^c</td>
<td>the complementary set of E in a domain Ω or in \mathbb{R}^n</td>
</tr>
<tr>
<td>$E \subset\subset F$</td>
<td>$E \subset F$, E compact</td>
</tr>
<tr>
<td>$B(x_0, r)$</td>
<td>open ball with center x_0 and radius r</td>
</tr>
<tr>
<td>$B^+(0, r)$</td>
<td>$B(0, r) \cap \mathbb{R}_+^n$</td>
</tr>
<tr>
<td>$\mathcal{L}(X,Y)$</td>
<td>set of bounded and linear operators from X to Y</td>
</tr>
<tr>
<td>$\mathcal{L}(X)$</td>
<td>dual space of the Banach space X</td>
</tr>
<tr>
<td>X'</td>
<td>dual space of the Banach space X</td>
</tr>
</tbody>
</table>
Matrix and linear algebra

- I: the identity matrix
- $\det B$: the determinant of the matrix B
- e_i: i-th vector of the canonical basis of \mathbb{R}^n
- $\text{Tr} B$: the trace of the matrix B
- $\|B\|_\infty$: the Euclidean norm of the matrix B, i.e.
 - $\left(\sum_{i,j=1}^n b_{ij}^2\right)^{1/2}$
- $\|B\|_{1,\infty}$:
 - $\left(\sum_{i,j,h=1}^n |D_h b_{ij}|^2\right)^{1/2}$
- $\|B\|_{2,\infty}$:
 - $\left(\sum_{i,j,h,k=1}^n |D_{hk} b_{ij}|^2\right)^{1/2}$
- $\langle \cdot, \cdot \rangle$ or $x \cdot y$: the Euclidean inner product between the vectors $x, y \in \mathbb{R}^n$

Function spaces: let $f : X \to Y$

- $f \restriction E$ or $f|_E$: restriction of f to $E \subset X$
- χ_E: characteristic function of the set E
- u_t: partial derivative with respect to t
- D_i: partial derivative with respect to x_i
- D_{ij}: $D_i D_j$
- Du: space gradient of a real-valued function u
- $D^2 u$: Hessian matrix of a real-valued function u
- Δu: $\text{Tr}(D^2 u)$
- $C(X, Y)$: space of continuous functions from X into Y
- $C(\Omega)$: space of continuous functions valued in \mathbb{R} or \mathbb{C}
- $C_c(\Omega)$: functions in $C(\Omega)$ with compact support in Ω
- $C_0(\Omega)$: closure in the sup norm of $C_c(\Omega)$
- $\text{UC}_b(\Omega)$: space of the uniformly continuous and bounded functions on Ω
- $C^{k,\alpha}(\Omega)$: space of k-times differentiable functions with $D^m f$ for $|m| \leq k$ bounded and continuous up to the boundary
- $C^{\alpha}(\Omega)$: space of α-Hölder continuous functions, $\alpha \in (0, 1)$
- $C_0^{k,\alpha}(\Omega)$: space of $f \in C^k(\Omega)$ with $D^m f \in C^{\alpha}(\Omega)$ for $|m| \leq k$ and $\alpha \in (0, 1)$
- $S(\mathbb{R}^n)$: Schwartz space of rapidly decreasing functions
- $[u]_{C^{\alpha}(\Omega)}$: the seminorm $\sup_{x,y \in \Omega} \frac{|u(x) - u(y)|}{|x-y|^\alpha}$
- $\| \cdot \|_{L^\infty(\Omega)}$: sup norm
- $\| \cdot \|_{L^p(\Omega)}$: usual Lesbegue space
- $\| \cdot \|_{W^{k,p}(\Omega)}$: usual Sobolev space
- $[L^p(\Omega), \| \cdot \|_{L^p(\Omega)}])$: space of functions belonging to $W^{k,p}(\Omega')$ for every $\Omega' \subset \subset \Omega$
- $W^{k,p}_0(\Omega)$: closure of $C_c^\infty(\Omega)$ in $W^{k,p}(\Omega)$
- $W^{-m,p}_0(\Omega)$: dual space of $W^{m,p}_0(\Omega)$ with $\frac{1}{p} + \frac{1}{p'} = 1$
- $BV(\Omega)$: functions with bounded variation in Ω
Operators

- \mathcal{A}: linear operator
- \mathcal{A}^*: formal adjoint operator of \mathcal{A}
- \mathcal{A}: realization of \mathcal{A} in a Banach space X
- $D(\mathcal{A})$: the domain of \mathcal{A}
- $\rho(\mathcal{A})$: resolvent set of the linear operator \mathcal{A}
- $\sigma(\mathcal{A})$: spectrum of the linear operator \mathcal{A}
- I: identity operator
- $[\mathcal{A}, \mathcal{B}]$: the operator $\mathcal{A}\mathcal{B} - \mathcal{B}\mathcal{A}$ defined in $D(\mathcal{A}\mathcal{B}) \cap D(\mathcal{B}\mathcal{A})$

Measure theory and BV functions

- $\mathcal{B}(X)$: σ- algebra of Borel subsets of a topological space X
- $[\mathcal{M}(X)]^m$: the \mathbb{R}^n-valued finite Radon measures on X
- $\mathcal{M}^+(X)$: the space of positive finite measures on X
- \mathcal{L}^n: Lebesgue measure in \mathbb{R}^n
- ω_n: Lebesgue measure of $B(0, 1)$ in \mathbb{R}^n
- \mathcal{H}^k: k-dimensional Hausdorff measure
- $|E|$ or $\mathcal{L}^n(E)$: the Lebesgue measure of the set E
- $|\mu|$: total variation of the measure μ
- $\mu|_E$: restriction of the measure μ to the set E
- Du: distributional derivative of u
- $\mathcal{P}(E, \Omega)$: perimeter of E in Ω
- $\mathcal{P}(E)$: perimeter of E in \mathbb{R}^n
- ν_E: generalized inner normal to E
- E^t: set of points of density t of E
- $\mathcal{F}E, \partial^* E$: reduced and essential boundary of E