Appendix A

A brief introduction to
interpolation theory

A.1 Interpolation spaces

This appendix is devoted to present an elementary treatment of the interpolation
theory. This theory has a wide range of applications to partial differential operators and
partial differential equations. We have used interpolation techniques in Chapter 3. In
particular, Theorem 3.1.2 relies on Theorem A.2.7 and both have been proved in [6].
The most known and useful families of interpolation spaces are the real and the complex
interpolation spaces.

Let X, Y be two real or complex Banach spaces. By X =Y we mean that X and Y
have the same elements with equivalence of the norms. By Y — X we mean that Y is
continuously embedded in X.

Suppose that Y — X; we say that D is an intermediate space between X and Y if

Y —D— X.

An interpolation space between X and Y is any intermediate space such that for every
T € L(X), whose restriction to Y belongs to £(Y"), the restriction to D belongs to L(D).
Another important class of intermediate spaces are the space of class J,.

Definition A.1.1. An intermediate space D between X and Y is said to be of class J,
if there exists a constant C' > 0 such that

lyllp < Clyllsllyllx®, yeY.

In this case we write D € J,(X,Y).
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A.1.1 Some interpolation estimates

In the next section some important examples of interpolatory inclusion are shown.
First we prove a useful interpolation estimate which allows us to estimate the LP norm of
the gradient of a function with respect to the LP norm of the function and of its second
derivatives. For a more general statement see [1, Theorem 4.17].

Proposition A.1.2. Let 1 < p < oo, then W'P(R") is of class Jy o between LP(R™)
and W*P(R"). In other words

1/2 1/2
1Dul| o rey < el D2ull gy lullFotreny (A1)
for u € W2P(R™) and some constant ¢ > 0.

PROOF. We first consider the one-dimensional case. Let u € C°(R) and = € R; then
for h >0

h
w(z + h) = u(z) + hu'(x) + /0 (h — s)u” (s + z)ds

hence
/ u(m + h) B u(m) 1 h "
u(x) = — _E/o (h—s)u"(s+ x)ds.

Taking the LP norm we get

2 1 [P
vl zery < 7 llullLe ) + E/o (h = s)llu" (s + )| Lo (ryds

2 h, ,
= EHUHLP(R) + 5”“ e (r)

Let ¢ = % then
1
(| rr)y < ellullLr ) + g”U”HLP(R)- (A.2)

Now, let u € C°(R™), then by (A.2) we get

1
/|Diu|pdmi§2p_1 Ep/ |Diiu\pdxi—|—f/ |ulPdx; |,
R R e? Jr

and by Fubini’s Theorem
1
/ |Diu|Pde < 2P~1 (57’/ |Dy;u|Pdx 4+ —/ |u|pdgc>
n R ep R

1
IDrallarme) < ¢ (ElDulary + Sl ocae ) (A3)

therefore

holds for every € > 0 and some constant ¢ depending only on p. Minimizing (A.3) on ¢,
we get
1/2 1/2

| Dull ey < 26| D%l Y2l 2 e

for every u € C°(R™). Finally the estimate can be extended by density to W2?(R"). O
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A.2 Real interpolation spaces

Let X,Y be Banach spaces, with Y — X (in general this is not required; however,
this simplifying assumption is satisfied in the case we are investigating). We describe
briefly the K-method used to construct a family of intermediate spaces between X and
Y, called real interpolation spaces and denoted by (X,Y)s ,, where 0 < 6 < 1 and
1 < p < oo. Let I be any interval contained in (0, +00), 1 < p < co. We denote by L (1)
the Lebesgue space LP with respect to the measure % inI. If p=oo, L) = L>=(I).
We set 1/00 = 0.

Definition A.2.1. For every x € X andt > 0, set

Ktz X)Y)= (lallx + tlolly).

inf
r=a+b,acX,bey

Now we define a family of intermediate spaces by means of the function K.
Definition A.2.2. Let 0 <6 <1,1<p< o0, set
(X,Y)op={reX:t—t Ktz X,Y) e L2(0,+o0)}
with
zllo.p = 1t~ K (¢, 2, X, Y) | £z (0, 400))

and
(X,Y)o={zeX: lim t °K(t,z,X,Y) =0}

t—0+t

Definition (A.2.2) concerns only the behavior of t =K (t,xz, X,Y) as t — 0, since
K(-,z,X,Y) is bounded. Moreover since K(t,z,X,Y) > min{l,¢}K(1,z,X,Y), for
0 =1 we deduce that

(X,Y)1, ={0}, p<oo.
Therefore, henceforth we consider the cases (6, p) € (0,1) x [1,400] and (0,p) = (1, 00).
Such spaces are called real interpolation spaces. One can prove that [|z||(x v), , is a norm
in (X,Y)s, and that the following results hold (see [31] for their proof).

Proposition A.2.3. For all (6,p) € (0,1) x [1,4+00] and (0,p) = (1,00), (X,Y ), is a
Banach space. For all 0 € (0,1), (X,Y)s is a Banach space, endowed with the norm of
(X,Y)0,00-

The spaces (X,Y)q, and (X,Y)y are of class Jp(X,Y) for every p € [1,00]. They are
actually interpolation spaces, as they enjoy the following property.
Theorem A.2.4. Let X;,Y; be Banach spaces such that Y; — X; for i = 1,2. Let
T e L(X1,X2) N L(Y1,Y2). Then for every 6 € (0,1) and p € [1, 00|, we have
T € L((X1,Y1)0,p, (X2, Y2)0,p) N L((X1,Y1)e, (X2, Y2)0)

and

1T 20 Y00 (X2 ¥2)o) < TN 2 X200,)" P U T 2viv2)0,)°
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Finally we state without proof the duality theorem for the real method. A proof of
it can be found in [46, Section 1.11.2].

Theorem A.2.5. (Dual space) Let Y dense in X. If 0 < 8 < 1 then for 1 <p < oo

1 1
(X, Y),9-,p =Y, X )10, p +— =1,

and for p = oo
(X, V) oo = (Y', X )10, (A.4)

A.2.1 Examples

We close this section with concrete examples of some interpolation spaces. For 6 €
(0,1), p € [1,00), WPP(R") is the space of all f € LP(R™) such that

[flwor = </eran Mdmdy) v < 00.

|z — y|ortn

It is endowed with the norm | - ||z» + []yye.r». When 6 > 1 is not integer, let [0] and
{6} be the integral and fractional parts of . Then W%P(R™) consists of the functions
f € Wlolp(R™) such that

> D flwiors

lee|=[0]

is finite. Analogously in this case we consider the space WP normed by

I llwiers + D [D*Jwiora-
o =1[6]

Example 2. For0 <6< 1,1<p < oo we have
(Cy(R™), Gy (R™))g,00 = Cy (R™)
(LP(R™), WP (R™))g,, = WOP(R™),
with equivalence of the respective norms.

Example 3. Let 0< 0, <6, <1,0<0<1,1<p<oo. Then
(Wel,p(Rn% W@g,p(Rn))e p= W(179)01+992,p(Rn).
If Q is an open set in R™ with uniformly C' boundary, then
(WOP(Q), W2P(Q))g 00 = W(1—0)91+9927p(9). (A.5)
Example 4. For0<6<1,1<p,q<oo, méeN,

(LP(R™), W™P(R"))g,q = Byg (R").
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Here B, (R") is the Besov space defined as follows: if s is not an integer, let [s| and
{s} be the integer and the fractional parts of s, respectively. Then B, ,(R") consists of
the functions f € WIshP(R™) such that

/
[f1B;, = Ialz—:[s} (/Rn |h|r§i+h{s}q(/Rn | D% f(x + h) — D‘lf(x)|pdx>”p)1 q

is finite. In particular, for p = q we have B, (R") = W*P(R"). If s = k € N, then
BF (R™) consists of the functions f € WF=1P(R") such that

o, = 5 ([ ([ 105+ 20 ~20% @+ + Do) as) ™"

p.q
|a|=k—1

1s finite.

For a complete proof of Examples above see [46, Sections 2.3, 2.4].

Corollary A.2.6. For 0 <0 <1/2,1<p < oo, we have
(LP(R"), W2P(R"))g,, = WP (R")

with equivalence of the respective norms.

In the following result we characterize the interpolation space between L!(Q) and a
subspace of W11(Q) which takes into account in a suitable way the boundary conditions
that are to be imposed in the parabolic of our interest.

Theorem A.2.7. Let Q be a subset of R™ with uniformly C? boundary; then for every
6 € (0,1/2) we have

(LM, WL Q) N W, (D)es = WH(Q) (A.6)

where v(x) denotes the external normal to 0Q at x, A is the matriz in (2.106) and
thlj(Q) is the closure of {u € C*(Q)|(A(z) - Vu,v(z)) = 0 for x € N} with respect to
the topology of W11(€).

PROOF. We define for an open and regular set w C R" the space
X5 (@) = (L' w), W (@) N Wa, (@))on

endowed with the norm

2 K (¢, ) _
lullxa ) = | —ve 4 K(tu) = iniu (lallLrw) +thblwz1(w) (A7)

a
acLt(w)
1,1
beWz’l(w)ﬁWA’yu(w)

We want to prove that X;'(Q) = W?2%1(Q) for 6§ € (0,1/2). For the result in the case
when w = R"™ we refer to [9, Theorem 4.3.6].
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We divide this proof in two steps, in the first one we prove that X/ (R}) = W2:1(R%),
where [ is the identity matrix. In the second one, we use a local change of coordinates
and the regularity of the domain €2 to conclude.

First step
We want to prove that

(LH(RL), WAL RE) 0 W (RI))oa = W2 (R) (A8)

where Wi,l(Rﬁ) denote the space W}ien(Ri)
Fix 6 € (0,1/2) and consider T' the operator that to any function v : R} — R associates

w(xy, ..., T,) ifz, >0

Tu=u(x) := { (A9)

w(xy,...,—xy,) ifz, <O.

As it is easily seen T € L(L'(RZ), L'(R™) N L(Wx'(RE) N W2L(RY), W2(R™));
therefore applying Theorem A.2.4 we get

T e L((LYRY), Wa (R NW2LRY))g1, (LHR™), W (R™))g,1).

As a consequence we deduce that if u € (L*'(R7), Wi,l(Ri) NW2LRY))p,1 then Tu €
W20.L(R™) con 2lullw20amy) = \|a||er,1(R1) < ||“HX91(R1)7 hence u € W21(R%).
Conversely let v € W2%1(R"); then the function @ defined in the same way of (A.9)
belongs to W?2%1(R"™); indeed

. (z) — u(y)
[U]W29,1(Rn) = /ndl‘/n Wdy

|a(z) — a(y)|
= 2fu] 201 (mo +2/ dx/ Me) — B
wEHRD) R 1xR, Rr-1xRr_ |7 — Y|t

< 4[U]W29,1(R1).

Thus, since Xp(R") = W20:L(R") for 6 € (0,1/2), there exist v; € L*(R") and vy €
W21(R") such that @ = vy +ve and t~?K(t,@) € LL(0,+00). Now, let g € C(R")
with D,,g = 0 in x,, = 0, then @ can be represented as the sum (v1 +v2 —g)+g=1w+g
with w € L'(R™), g € W2 (R"). If we consider the restriction of w and g in R'} we get
that u = @grn = wirn + grn with wirn € L'(RY), girn € W2H(RL) N Wyl (R7) and
t=K (t,u) € L1(0,+00) since K (t,u) < K(t, 1) for all t € (0,00). Thus (A.8) is proved.
Second step

Now we consider the same partition of unity {n} associated with the covering {Up}
of () considered in the proof of Proposition 3.1.1. Then, for a given function u defined in
Q, writing u as 370 uny,, we can prove that uny € Xp(Q) if and only if uny € W291(Q).
For every h > 1 we can find ¢y, : B4 (0) — Up N such that d(¢n ) (a(x)v(x)) = —en,
and prove that v, := uny, o ¢y, belongs to Xp(R'}) if and only if belongs to W29’1(R7}r),
by which um;, € Xp(Q) if and only if un, € W2%1(Q). Now in order to conclude we have
to show that u € Xg(€Q) if and only if u € W2%1(Q). Notice that the result is immediate
if © is bounded, since in that case the covering {Uy,};, is finite.
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Suppose first that u € Xp(Q). Since Xp(Q) continuously embeds in L'(Q), it is
sufficient to estimate the seminorm [u]yy 20,1 (). Moreover, since u € Xy(§2) we also have
that uny, € Xp(f2) for each h € N. Notice that, for fixed x € Uy, y € Uy there exists
I, € N such that

u(x) —uly) = Y ul@)mi(x) —uly)mi(y)

i€lpg

where either supp (;) N Uy # 0 or supp (n;) N Ug # 0. Since {Up}, has a bounded
overlapping k, then #(I;) < 2k. Then

lu(z) —u(y)| ien,, (w@)ni(z) — u(y)ni(y))]
/ y|n+29 drdy < Z /Uh dx/Uk |z — y[n 20 dy

alo lz— bkl

u(y)nm(y)|
S [ e ), S w10

Now, we define V}, = U{j:anUh#@} Uj;, then there is a constant ¢, > 0 depending only
on k, the overlapping of the U;, such that

h k=1i€ln

Yicny lunillrwy < cellullprvi,ov)
(A.11)

Sicny lunillwea @y < eaMlullwzv,uv)

where M := sup,cn ||71]2,00. Moreover we can write Q = |Ji_, ©; where Q; = {z € Q:
#{j:xeU;} =i} and Q;NQ =0 if i # k. Then

Z/Vhwk |u|dx—zz/ |u|dx

hk =17 (VaUVi)N

—ZZ/ |u|dx

i=1 h,k 7 (VaUVE)N

= Zz/ lu| dz < Kllul|L1(q)- (A.12)
i=1 Y%
Analogously,
> lullwer vuove) < Ellullwea g (A.13)

h.k

Since the functions vy, := uny, o v, belong both to (L*(R%), W*H(R}) N Wé’i(Ri))g,l
and W2%1(R"), and in RY the norms of W2%1(R") and X,(R" ) are equivalent, we get
a constant kg, depending only on the norm of the embedding of Xp(R") in W2%1(R%)
and vy, such that

u(y)mi(y)] L
/Uh dx/Uk |x7 |n+29 dy < Ko /0 751+HK(t un; )dt (A.14)
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where K is defined in (A.7). By definition of K(¢,-) and by (A.11) we get

> K(bum)= 3 inf (lallosen + s o)
1€Ihg i€lpg 1a + b~: qu 1
aeLY(Q),be W (Q)
2 *i{‘lf* (lanill oy + tlonillw=10))
i€lpg a € Ll(Q)’ be W2’1(Q)
) e > (lamillpro) + tlibnillw=10)
aGLl(Q),berl(Q) i€lng
S E B (HGHLl(V”'UVk) + tHbHW?,l(VhUVk))

at+b=u
a€ LYQ),be W(Q)

where x; depends on x and M. Summing up on h, k we get, by (A.12) and (A.13),

Z Z (t,un;) < k1 K(t,u).

h,k=11i€lny

Then by (A.10), (A.14) and using the last estimate we get

@) =)l g < Z Y ok +OOLK(t )dt
| |n+20 0 ), e » Ui

ayl<p |7 = hk=14€Ipy,
+oo 1
< Ko /<E1/0 WK(tvu)dt:"50"51||“HX9(Q)7

whence Xy(Q) C W?2%1(Q). To prove the reverse inclusion, consider {n,, Uy} as before.
First of all observe that, we can estimate for each p > 0

|u(:z:)77r$(il? mi(é/@)nh(yﬂ dudy .

C
[unnlw2e.10) < —=z5 lullerw,) +/
p lz—y|<p

where ¢ = 2|Up| is a positive constant independent on h since Uj are balls with fixed
radius. Adding and subtracting u(z)ny,(y) we can estimate

/ [u(@)nn(x) — u(y)nn(y)] dxdy
|lz—y|<p

o =y

/QXQ |: ! (nh) | r — y|n*1+20 X“h,p (x7 y) | ‘n+20 XQXUh (.’L‘ y):| dwdy

where Ay, , = (Up x QUQ x Up) N{(z,y) € AxQ : |z —y| < p}. Then, choosing p small
enough in order that the p-enlarged sets U/ have the same overlapping as the Uj,’s and
Ap,p, CUP x Uf, we get

w() — u(y)
=0y < ol wry / dy / ulz) —wlw)l
B(y,p) |z -yl

where ko depends (only) on ||n||w1.,8, p,n. Since the overlapping is bounded we can
find two constants k3, k4 such that

ZHU%HW% 1(Q) <f€3 |U||L1(Q)+/ dy/ 77%(29”(133 < Kallullwzo.1(q) -
By 1Yl
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Then for each ¢ > 0 we can find a, € L*(Q), b, € W21(Q) such that ay, + by, = un, and
||dh||L1(Q) + t||bh||W2,1(Q) < K(t,unh) + €2~". Define a = Zh ap and b = Zh bn. Then
a+b=wu and

K(t,u) <llallL1(a) + tl|bllw21() < Z |z @) + tllbnlln=1 o) < Z K(t,unp) + €
h h
and then K (t,u) < >, K(t,uny). Now, as before, since the functions vy, are in W21 (R7)
and in R", the norms of W?2%1(R") and Xy(R"}.) are equivalent, there exists a constant
ks, depending only on the norm of the embedding of W29’1(Ri) in Xg(R%) and vy,
such that

Foo u(x ) —u
/0 tli_eK(t,unh)dt</€5/de/Q ( )nfgg_)ywéygnh(y”dy. (A.15)

Therefore there is a constant kg (depending only on x4 and «5)

+oo 1 +oo 1 +oo
h=1

—+oo

< K5 Z Hunh||W29v1(Q) < K6||H||w29,1(9).
h=1

A.3 Complex interpolation spaces

The complex interpolation methods were introduced by J. L. Lions in [29], A. P.
Calderén in [11] and [12]. We shall follow the treatment of [46]. Let Y, X be complex
Banach spaces with ¥ — X and let S be the strip {z = z+iy € C: 0 < z < 1}.
By the maximum principle for holomorphic functions defined on a strip, we get that if
F : S — X is holomorphic in the interior of S, continuous and bounded in .S, then for
each z € §

1P(2)]1x < max{sup | F(it) [ x,sup [|F(1 +it)]1x ).
teR teR

Definition A.3.1. Denote by H(X,Y') the space consisting of all continuous and bounded
functions F : S — X which are holomorphic in the interior of the strip such that t —
F(it) e CR,X), t— F(1+1it) € C(R,Y) and such that

[ l2e(xvy = max{ sup [[F(it)[|x, sup [[F (L +it)[ly } < oo.
teR teR

By using the maximum principle, it is not hard to prove that H(X,Y") is a Banach
space. The complex interpolation spaces are defined by means of functions in H(X,Y).

Definition A.3.2. For every 6 € [0,1], we define

[X,Y]g={F(): FeH(X,Y)},
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with norm

= inf F
||f||[X,Y]e FGH(X}{})?F(G):J(H HH(X,Y)

That [X,Y]s is a Banach space follows from the fact that [X,Y]y is isomorphic to
the quotient space H(X,Y)/Ny where Ny is the subset of H(X,Y) consisting of the
functions which vanish at z = 6. Since Np is closed, the quotient space is a Banach space
and so is [X,Y]s. The Banach space [X, Y]y is indeed an intermediate space as the next
proposition states.

Proposition A.3.3. Let 0 € (0,1); then

Y= [X,Y]p— X.

PROOF. Let f € Y. The constant function F(z) = f belongs to H(X,Y) and

IFll7exyy = max{[[fllx, [flly} < el flly

for some ¢ > 0. Therefore f = F(0) € [X,Y]p and [/ f]/(x,y}, < clflly. The other
embedding is a consequence of the maximum principle. Indeed if f = F(0) with F' €
H(X,Y) then

1fllx < max{sup [[F(it)[|x, sup [| (1 +it) [ x }
teR teR
< cmax{sup ||F(it)||x,sup || F(1 + it)|y }
teR teR
= [ Fllnexy

so that f € X and || f|x < c|Fllncxy)- O

In general [X, Y]y does not coincide with any (X,Y)g,. If X,Y are Hilbert spaces
then the equality holds for p = 2, that is

[X,Y]p=(X,Y)po 0<6<1.

In the non Hilbertian case there are no general rules.

Two other useful facts are recalled here, one concerning the dual space of such complex
interpolation spaces and the last proves that [X, Y]y are actually interpolation spaces.

Theorem A.3.4. (Dual space) Let 0 € (0,1). IfY is dense in X and one of the two
spaces X or'Y is reflexive, then

(X, Y]y = [Y', Xli—0. (A.16)

This theorem is a consequence of the results in A.P. Calderén [12]. For the proof we
refer to [12].
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Theorem A.3.5. Let (X1,Y7),(X2,Ys) be complex interpolation couples. Assume that
T € L(X1,X2) N L(Y1,Y2), then the restriction of T)x, v, s in L([X1,Y1]e, [X2,Y2]s)
for every 6 € (0,1). Moreover,

170(

1T 211,100, 1%z v200) < TN 211, x2)) T 2pvs,v2)°-

For the proof and a complete analysis of these spaces we refer to [46].






