
Appendix A

A brief introduction to

interpolation theory

A.1 Interpolation spaces

This appendix is devoted to present an elementary treatment of the interpolation
theory. This theory has a wide range of applications to partial differential operators and
partial differential equations. We have used interpolation techniques in Chapter 3. In
particular, Theorem 3.1.2 relies on Theorem A.2.7 and both have been proved in [6].
The most known and useful families of interpolation spaces are the real and the complex
interpolation spaces.
Let X, Y be two real or complex Banach spaces. By X = Y we mean that X and Y

have the same elements with equivalence of the norms. By Y ↪→ X we mean that Y is
continuously embedded in X.
Suppose that Y ↪→ X; we say that D is an intermediate space between X and Y if

Y ↪→ D ↪→ X.

An interpolation space between X and Y is any intermediate space such that for every
T ∈ L(X), whose restriction to Y belongs to L(Y ), the restriction to D belongs to L(D).
Another important class of intermediate spaces are the space of class Jα.

Definition A.1.1. An intermediate space D between X and Y is said to be of class Jα
if there exists a constant C > 0 such that

‖y‖D ≤ C‖y‖αY ‖y‖1−αX , y ∈ Y.

In this case we write D ∈ Jα(X,Y ).
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A.1.1 Some interpolation estimates

In the next section some important examples of interpolatory inclusion are shown.
First we prove a useful interpolation estimate which allows us to estimate the Lp norm of
the gradient of a function with respect to the Lp norm of the function and of its second
derivatives. For a more general statement see [1, Theorem 4.17].

Proposition A.1.2. Let 1 ≤ p < ∞, then W 1,p(Rn) is of class J1/2 between Lp(Rn)
and W 2,p(Rn). In other words

‖Du‖Lp(Rn) ≤ c‖D2u‖1/2Lp(Rn)‖u‖
1/2
Lp(Rn) (A.1)

for u ∈W 2,p(Rn) and some constant c > 0.

Proof. We first consider the one-dimensional case. Let u ∈ C∞c (R) and x ∈ R; then
for h > 0

u(x+ h) = u(x) + hu′(x) +
∫ h

0

(h− s)u′′(s+ x)ds

hence

u′(x) =
u(x+ h)− u(x)

h
− 1
h

∫ h

0

(h− s)u′′(s+ x)ds.

Taking the Lp norm we get

‖u′‖Lp(R) ≤
2
h
‖u‖Lp(R) +

1
h

∫ h

0

(h− s)‖u′′(s+ ·)‖Lp(R)ds

=
2
h
‖u‖Lp(R) +

h

2
‖u′′‖Lp(R)

Let ε = 2
h then

‖u′‖Lp(R) ≤ ε‖u‖Lp(R) +
1
ε
‖u′′‖Lp(R). (A.2)

Now, let u ∈ C∞c (Rn), then by (A.2) we get∫
R

|Diu|pdxi ≤ 2p−1

(
εp
∫
R

|Diiu|pdxi +
1
εp

∫
R

|u|pdxi
)
,

and by Fubini’s Theorem∫
Rn

|Diu|pdx ≤ 2p−1

(
εp
∫
Rn

|Diiu|pdx+
1
εp

∫
Rn

|u|pdx
)

therefore

‖Diu‖Lp(Rn) ≤ c

(
ε‖D2u‖Lp(Rn) +

1
ε
‖u‖Lp(Rn)

)
(A.3)

holds for every ε > 0 and some constant c depending only on p. Minimizing (A.3) on ε,
we get

‖Du‖Lp(Rn) ≤ 2c‖D2u‖1/2Lp(Rn)‖u‖
1/2
Lp(Rn)

for every u ∈ C∞c (Rn). Finally the estimate can be extended by density toW 2,p(Rn).
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A.2 Real interpolation spaces

Let X,Y be Banach spaces, with Y ↪→ X (in general this is not required; however,
this simplifying assumption is satisfied in the case we are investigating). We describe
briefly the K-method used to construct a family of intermediate spaces between X and
Y , called real interpolation spaces and denoted by (X,Y )θ,p, where 0 < θ ≤ 1 and
1 ≤ p ≤ ∞. Let I be any interval contained in (0,+∞), 1 ≤ p <∞. We denote by Lp∗(I)
the Lebesgue space Lp with respect to the measure dt

t in I. If p = ∞, L∞∗ (I) = L∞(I).
We set 1/∞ = 0.

Definition A.2.1. For every x ∈ X and t > 0, set

K(t, x,X, Y ) = inf
x=a+b,a∈X,b∈Y

(‖a‖X + t‖b‖Y ).

Now we define a family of intermediate spaces by means of the function K.

Definition A.2.2. Let 0 < θ ≤ 1, 1 ≤ p ≤ ∞, set

(X,Y )θ,p = {x ∈ X : t 7→ t−θK(t, x,X, Y ) ∈ Lp∗(0,+∞)}

with
‖x‖θ,p = ‖t−θK(t, x,X, Y )‖Lp

∗((0,+∞))

and
(X,Y )θ = {x ∈ X : lim

t→0+
t−θK(t, x,X, Y ) = 0}

Definition (A.2.2) concerns only the behavior of t−θK(t, x,X, Y ) as t → 0, since
K(·, x,X, Y ) is bounded. Moreover since K(t, x,X, Y ) ≥ min{1, t}K(1, x,X, Y ), for
θ = 1 we deduce that

(X,Y )1,p = {0}, p <∞.

Therefore, henceforth we consider the cases (θ, p) ∈ (0, 1)× [1,+∞] and (θ, p) = (1,∞).
Such spaces are called real interpolation spaces. One can prove that ‖x‖(X,Y )θ,p

is a norm
in (X,Y )θ,p and that the following results hold (see [31] for their proof).

Proposition A.2.3. For all (θ, p) ∈ (0, 1)× [1,+∞] and (θ, p) = (1,∞), (X,Y )θ,p is a
Banach space. For all θ ∈ (0, 1), (X,Y )θ is a Banach space, endowed with the norm of
(X,Y )θ,∞.

The spaces (X,Y )θ,p and (X,Y )θ are of class Jθ(X,Y ) for every p ∈ [1,∞]. They are
actually interpolation spaces, as they enjoy the following property.

Theorem A.2.4. Let Xi, Yi be Banach spaces such that Yi ↪→ Xi for i = 1, 2. Let
T ∈ L(X1, X2) ∩ L(Y1, Y2). Then for every θ ∈ (0, 1) and p ∈ [1,∞], we have

T ∈ L((X1, Y1)θ,p, (X2, Y2)θ,p) ∩ L((X1, Y1)θ, (X2, Y2)θ)

and
‖T‖L((X1,Y1)θ,p,(X2,Y2)θ,p) ≤ (‖T‖L(X1,X2)θ,p

)1−θ(‖T‖L(Y1,Y2)θ,p
)θ
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Finally we state without proof the duality theorem for the real method. A proof of
it can be found in [46, Section 1.11.2].

Theorem A.2.5. (Dual space) Let Y dense in X. If 0 < θ < 1 then for 1 ≤ p <∞

(X,Y )′θ,p = (Y ′, X ′)1−θ,p′ ,
1
p

+
1
p′

= 1,

and for p = ∞
(X,Y )′θ,∞ = (Y ′, X ′)1−θ,1. (A.4)

A.2.1 Examples

We close this section with concrete examples of some interpolation spaces. For θ ∈
(0, 1), p ∈ [1,∞), W θ,p(Rn) is the space of all f ∈ Lp(Rn) such that

[f ]W θ,p =
(∫

Rn×Rn

|f(x)− f(y)|p

|x− y|θp+n
dxdy

)1/p

<∞.

It is endowed with the norm ‖ · ‖Lp + [·]W θ,p . When θ > 1 is not integer, let [θ] and
{θ} be the integral and fractional parts of θ. Then W θ,p(Rn) consists of the functions
f ∈W [θ],p(Rn) such that ∑

|α|=[θ]

[Dαf ]W{θ},p

is finite. Analogously in this case we consider the space W θ,p normed by

‖ · ‖W [θ],p +
∑
|α|=[θ]

[Dα·]W{θ},p .

Example 2. For 0 < θ < 1, 1 ≤ p <∞ we have

(Cb(Rn), C1
b (R

n))θ,∞ = Cθb (R
n)

(Lp(Rn),W 1,p(Rn))θ,p = W θ,p(Rn),

with equivalence of the respective norms.

Example 3. Let 0 ≤ θ1 < θ2 ≤ 1, 0 < θ < 1, 1 ≤ p <∞. Then

(W θ1,p(Rn),W θ2,p(Rn))θ,p = W (1−θ)θ1+θθ2,p(Rn).

If Ω is an open set in Rn with uniformly C1 boundary, then

(W θ1,p(Ω),W θ2,p(Ω))θ,∞ = W (1−θ)θ1+θθ2,p(Ω). (A.5)

Example 4. For 0 < θ < 1, 1 ≤ p, q <∞, m ∈ N,

(Lp(Rn),Wm,p(Rn))θ,q = Bmθp,q (Rn).
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Here Bsp,q(R
n) is the Besov space defined as follows: if s is not an integer, let [s] and

{s} be the integer and the fractional parts of s, respectively. Then Bsp,q(R
n) consists of

the functions f ∈W [s],p(Rn) such that

[f ]Bs
p,q

=
∑
|α|=[s]

(∫
Rn

dh

|h|n+{s}q

(∫
Rn

|Dαf(x+ h)−Dαf(x)|pdx
)q/p)1/q

is finite. In particular, for p = q we have Bsp,p(R
n) = W s,p(Rn). If s = k ∈ N, then

Bkp,q(R
n) consists of the functions f ∈W k−1,p(Rn) such that

[f ]Bk
p,q

=
∑

|α|=k−1

(∫
Rn

dh

|h|n+q

(∫
Rn

|Dαf(x+ 2h)− 2Dαf(x+ h) +Dαf(x)|pdx
)q/p

is finite.

For a complete proof of Examples above see [46, Sections 2.3, 2.4].

Corollary A.2.6. For 0 < θ < 1/2, 1 ≤ p <∞, we have

(Lp(Rn),W 2,p(Rn))θ,p = W 2θ,p(Rn)

with equivalence of the respective norms.

In the following result we characterize the interpolation space between L1(Ω) and a
subspace of W 1,1(Ω) which takes into account in a suitable way the boundary conditions
that are to be imposed in the parabolic of our interest.

Theorem A.2.7. Let Ω be a subset of Rn with uniformly C2 boundary; then for every
θ ∈ (0, 1/2) we have

(L1(Ω),W 2,1(Ω) ∩W 1,1
A,ν(Ω))θ,1 = W 2θ,1(Ω) (A.6)

where ν(x) denotes the external normal to ∂Ω at x, A is the matrix in (2.106) and
W 1,1
A,ν(Ω) is the closure of {u ∈ C1(Ω) | 〈A(x) · ∇u, ν(x)〉 = 0 for x ∈ ∂Ω} with respect to

the topology of W 1,1(Ω).

Proof. We define for an open and regular set ω ⊂ Rn the space

XA
θ (ω) = (L1(ω),W 2,1(ω) ∩W 1,1

A,ν(ω))θ,1

endowed with the norm

‖u‖XA
θ (ω) :=

∫ +∞

0

K(t, u)
t1+θ

dt, K(t, u) := inf
a+b=u

a∈L1(ω)

b∈W2,1(ω)∩W
1,1
A,ν

(ω)

(
‖a‖L1(ω) + t‖b‖W 2,1(ω)

)
(A.7)

We want to prove that XA
θ (Ω) = W 2θ,1(Ω) for θ ∈ (0, 1/2). For the result in the case

when ω = Rn we refer to [9, Theorem 4.3.6].
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We divide this proof in two steps, in the first one we prove thatXI
θ (R

n
+) = W 2θ,1(Rn

+),
where I is the identity matrix. In the second one, we use a local change of coordinates
and the regularity of the domain Ω to conclude.
First step
We want to prove that

(L1(Rn
+),W 2,1(Rn

+) ∩W 1,1
N (Rn

+))θ,1 = W 2θ,1(Rn
+) (A.8)

where W 1,1
N (Rn

+) denote the space W 1,1
I,−en

(Rn
+).

Fix θ ∈ (0, 1/2) and consider T the operator that to any function u : Rn
+ → R associates

Tu = ũ(x) :=

{
u(x1, . . . , xn) if xn ≥ 0

u(x1, . . . ,−xn) if xn < 0.
(A.9)

As it is easily seen T ∈ L(L1(Rn
+), L1(Rn)) ∩ L(W 1,1

N (Rn
+) ∩ W 2,1(Rn

+),W 2,1(Rn));
therefore applying Theorem A.2.4 we get

T ∈ L
(
(L1(Rn

+),W 1,1
N (Rn

+) ∩W 2,1(Rn
+))θ,1, (L1(Rn),W 2,1(Rn))θ,1

)
.

As a consequence we deduce that if u ∈ (L1(Rn
+),W 1,1

N (Rn
+) ∩W 2,1(Rn

+))θ,1 then Tu ∈
W 2θ,1(Rn) con 2‖u‖W 2θ,1(Rn

+) = ‖ũ‖W 2θ,1(Rn
+) ≤ ‖u‖XI

θ (Rn
+), hence u ∈W 2θ,1(Rn

+).
Conversely let u ∈ W 2θ,1(Rn

+); then the function ũ defined in the same way of (A.9)
belongs to W 2θ,1(Rn); indeed

[ũ]W 2θ,1(Rn) =
∫
Rn

dx

∫
Rn

|ũ(x)− ũ(y)|
|x− y|n+2θ

dy

= 2[u]W 2θ,1(Rn
+) + 2

∫
Rn−1×R+

dx

∫
Rn−1×R−

|ũ(x)− ũ(y)|
|x− y|n+2θ

dy

≤ 4[u]W 2θ,1(Rn
+).

Thus, since Xθ(Rn) = W 2θ,1(Rn) for θ ∈ (0, 1/2), there exist v1 ∈ L1(Rn) and v2 ∈
W 2,1(Rn) such that ũ = v1 + v2 and t−θK(t, ũ) ∈ L1

∗(0,+∞). Now, let g ∈ C∞c (Rn)
with Dng = 0 in xn = 0, then ũ can be represented as the sum (v1 + v2− g)+ g =: w+ g

with w ∈ L1(Rn), g ∈W 2,1(Rn). If we consider the restriction of w and g in Rn
+ we get

that u = ũ|Rn
+

= w|Rn
+

+ g|Rn
+

with w|Rn
+
∈ L1(Rn

+), g|Rn
+
∈ W 2,1(Rn

+) ∩W 1,1
N (Rn

+) and
t−θK(t, u) ∈ L1

∗(0,+∞) since K(t, u) ≤ K(t, ũ) for all t ∈ (0,∞). Thus (A.8) is proved.
Second step
Now we consider the same partition of unity {ηh}h associated with the covering {Uh}h
of Ω considered in the proof of Proposition 3.1.1. Then, for a given function u defined in
Ω, writing u as

∑+∞
h=0 uηh, we can prove that uη0 ∈ Xθ(Ω) if and only if uη0 ∈W 2θ,1(Ω).

For every h ≥ 1 we can find ψh : B+(0) → Uh ∩ Ω such that d(ψh)x(a(x)ν(x)) = −en,
and prove that vh := uηh ◦ ψh belongs to Xθ(Rn

+) if and only if belongs to W 2θ,1(Rn
+),

by which uηh ∈ Xθ(Ω) if and only if uηh ∈W 2θ,1(Ω). Now in order to conclude we have
to show that u ∈ Xθ(Ω) if and only if u ∈W 2θ,1(Ω). Notice that the result is immediate
if Ω is bounded, since in that case the covering {Uh}h is finite.
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Suppose first that u ∈ Xθ(Ω). Since Xθ(Ω) continuously embeds in L1(Ω), it is
sufficient to estimate the seminorm [u]W 2θ,1(Ω). Moreover, since u ∈ Xθ(Ω) we also have
that uηh ∈ Xθ(Ω) for each h ∈ N. Notice that, for fixed x ∈ Uh, y ∈ Uk there exists
Ihk ⊂ N such that

u(x)− u(y) =
∑
i∈Ihk

u(x)ηi(x)− u(y)ηi(y)

where either supp (ηi) ∩ Uh 6= ∅ or supp (ηi) ∩ Uk 6= ∅. Since {Uh}h has a bounded
overlapping κ, then #(Ihk) ≤ 2κ. Then

∫
Ω

∫
Ω

|u(x)− u(y)|
|x− y|n+2θ

dxdy ≤
∞∑

h,k=1

∫
Uh

dx

∫
Uk

|
∑
i∈Ihk

(u(x)ηi(x)− u(y)ηi(y))|
|x− y|n+2θ

dy

≤
∞∑

h,k=1

∑
i∈Ihk

∫
Uh

dx

∫
Uk

|u(x)ηh(x)− u(y)ηh(y)|
|x− y|n+2θ

dy . (A.10)

Now, we define Vh =
⋃
{j:Uj∩Uh 6=∅} Uj , then there is a constant cκ > 0 depending only

on κ, the overlapping of the Ui, such that∑
i∈Ihk

‖uηi‖L1(Ui) ≤ cκ‖u‖L1(Vh∪Vk)∑
i∈Ihk

‖uηi‖W 2,1(Ui) ≤ cκM‖u‖W 2,1(Vh∪Vk)

(A.11)

where M := suph∈N ‖ηh‖2,∞. Moreover we can write Ω =
⋃κ
i=1 Ωi where Ωi = {x ∈ Ω :

#{j : x ∈ Uj} = i} and Ωi ∩ Ωk = ∅ if i 6= k. Then

∑
h,k

∫
Vh∪Vk

|u| dx =
∑
h,k

κ∑
i=1

∫
(Vh∪Vk)∩Ωi

|u| dx

=
κ∑
i=1

∑
h,k

∫
(Vh∪Vk)∩Ωi

|u| dx

=
κ∑
i=1

i

∫
Ωi

|u| dx ≤ κ‖u‖L1(Ω). (A.12)

Analogously, ∑
h,k

‖u‖W 2,1(Vh∪Vk) ≤ κ‖u‖W 2,1(Ω). (A.13)

Since the functions vh := uηh ◦ ψh belong both to (L1(Rn
+),W 2,1(Rn

+) ∩W 1,1
A,ν(R

n
+))θ,1

and W 2θ,1(Rn
+), and in RN

+ the norms of W 2θ,1(Rn
+) and Xθ(Rn

+) are equivalent, we get
a constant κ0, depending only on the norm of the embedding of Xθ(Rn

+) in W 2θ,1(Rn
+)

and ψh, such that∫
Uh

dx

∫
Uk

|u(x)ηi(x)− u(y)ηi(y)|
|x− y|n+2θ

dy ≤ κ0

∫ +∞

0

1
t1+θ

K(t, uηi)dt (A.14)
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where K is defined in (A.7). By definition of K(t, ·) and by (A.11) we get∑
i∈Ihk

K(t, uηi) =
∑
i∈Ihk

inf
ã+ b̃ = uηi

ã ∈ L1(Ω), b̃ ∈ W 2,1(Ω)

(
‖ã‖L1(Ω) + t‖b̃‖W 2,1(Ω)

)
≤
∑
i∈Ihk

inf
a+ b = u

a ∈ L1(Ω), b ∈ W 2,1(Ω)

(
‖aηi‖L1(Ω) + t‖bηi‖W 2,1(Ω)

)
≤ inf

a+ b = u

a ∈ L1(Ω), b ∈ W 2,1(Ω)

∑
i∈Ihk

(
‖aηi‖L1(Ω) + t‖bηi‖W 2,1(Ω)

)
≤ κ1 inf

a+ b = u

a ∈ L1(Ω), b ∈ W 2,1(Ω)

(
‖a‖L1(Vh∪Vk) + t‖b‖W 2,1(Vh∪Vk)

)
where κ1 depends on κ and M . Summing up on h, k we get, by (A.12) and (A.13),

+∞∑
h,k=1

∑
i∈Ihk

K(t, uηi) ≤ κ1K(t, u) .

Then by (A.10), (A.14) and using the last estimate we get∫
|x−y|<ρ

|u(x)− u(y)|
|x− y|n+2θ

dxdy ≤
+∞∑
h,k=1

∑
i∈Ihk

κ0

∫ +∞

0

1
t1+θ

K(t, uηi)dt

≤ κ0 κ1

∫ +∞

0

1
t1+θ

K(t, u)dt = κ0 κ1‖u‖Xθ(Ω) ,

whence Xθ(Ω) ⊂W 2θ,1(Ω). To prove the reverse inclusion, consider {ηh, Uh}h as before.
First of all observe that, we can estimate for each ρ > 0

[uηh]W 2θ,1(Ω) ≤
c

ρn+2θ
‖u‖L1(Uh) +

∫
|x−y|<ρ

|u(x)ηh(x)− u(y)ηh(y)|
|x− y|n+2θ

dxdy .

where c = 2|Uh| is a positive constant independent on h since Uh are balls with fixed
radius. Adding and subtracting u(x)ηh(y) we can estimate∫

|x−y|<ρ

|u(x)ηh(x)− u(y)ηh(y)|
|x− y|n+2θ

dxdy

≤
∫

Ω×Ω

[
Lip(ηh)

|u(x)|
|x− y|n−1+2θ

χAh,ρ
(x, y) +

|u(x)− u(y)|
|x− y|n+2θ

χΩ×Uh
(x, y)

]
dxdy

where Ah,ρ = (Uh×Ω∪Ω×Uh)∩{(x, y) ∈ Ω×Ω : |x− y| < ρ}. Then, choosing ρ small
enough in order that the ρ-enlarged sets Uρh have the same overlapping as the Uh’s and
Ah,ρ ⊂ Uρh × Uρh , we get

‖uηh‖W 2θ,1(Ω) ≤ κ2‖u‖L1(Uρ
h) +

∫
Uh

dy

∫
B(y,ρ)

|u(x)− u(y)|
|x− y|n+2θ

dx

where κ2 depends (only) on ‖ηh‖W 1,∞ , θ, ρ, n. Since the overlapping is bounded we can
find two constants κ3, κ4 such that∑

h

‖uηh‖W 2θ,1(Ω) ≤ κ3

[
‖u‖L1(Ω) +

∫
Ω

dy

∫
B(y,ρ)

|u(x)− u(y)|
|x− y|n+2θ

dx
]
≤ κ4‖u‖W 2θ,1(Ω) .
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Then for each ε > 0 we can find ãh ∈ L1(Ω), b̃h ∈W 2,1(Ω) such that ãh + b̃h = uηh and
‖ãh‖L1(Ω) + t‖b̃h‖W 2,1(Ω) ≤ K(t, uηh) + ε2−h. Define a =

∑
h ãh and b =

∑
h b̃h. Then

a+ b = u and

K(t, u)≤‖a‖L1(Ω) + t‖b‖W 2,1(Ω)≤
∑
h

‖ãh‖L1(Ω) + t‖b̃h‖W 2,1(Ω)≤
∑
h

K(t, uηh) + ε

and thenK(t, u) ≤
∑
hK(t, uηh). Now, as before, since the functions vh are inW 2θ,1(Rn

+)
and in Rn

+, the norms of W 2θ,1(Rn
+) and Xθ(Rn

+) are equivalent, there exists a constant
κ5, depending only on the norm of the embedding of W 2θ,1(Rn

+) in Xθ(Rn
+) and ψh,

such that∫ +∞

0

1
t1+θ

K(t, uηh)dt ≤ κ5

∫
Ω

dx

∫
Ω

|u(x)ηh(x)− u(y)ηh(y)|
|x− y|n+2θ

dy . (A.15)

Therefore there is a constant κ6 (depending only on κ4 and κ5)∫ +∞

0

1
t1+θ

K(t, u)dt ≤
∫ +∞

0

1
t1+θ

+∞∑
h=1

K(t, uηh)dt

≤ κ5

+∞∑
h=1

‖uηh‖W 2θ,1(Ω) ≤ κ6‖u‖W 2θ,1(Ω).

A.3 Complex interpolation spaces

The complex interpolation methods were introduced by J. L. Lions in [29], A. P.
Calderón in [11] and [12]. We shall follow the treatment of [46]. Let Y,X be complex
Banach spaces with Y ↪→ X and let S be the strip {z = x + iy ∈ C : 0 ≤ x ≤ 1}.
By the maximum principle for holomorphic functions defined on a strip, we get that if
F : S → X is holomorphic in the interior of S, continuous and bounded in S, then for
each z ∈ S

‖F (z)‖X ≤ max{sup
t∈R

‖F (it)‖X , sup
t∈R

‖F (1 + it)‖X}.

Definition A.3.1. Denote by H(X,Y ) the space consisting of all continuous and bounded
functions F : S → X which are holomorphic in the interior of the strip such that t 7→
F (it) ∈ C(R, X), t 7→ F (1 + it) ∈ C(R, Y ) and such that

‖F‖H(X,Y ) = max{ sup
t∈R

‖F (it)‖X , sup
t∈R

‖F (1 + it)‖Y } <∞.

By using the maximum principle, it is not hard to prove that H(X,Y ) is a Banach
space. The complex interpolation spaces are defined by means of functions in H(X,Y ).

Definition A.3.2. For every θ ∈ [0, 1], we define

[X,Y ]θ = {F (θ) : F ∈ H(X,Y )},
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with norm
‖f‖[X,Y ]θ = inf

F∈H(X,Y ),F (θ)=f
‖F‖H(X,Y )

That [X,Y ]θ is a Banach space follows from the fact that [X,Y ]θ is isomorphic to
the quotient space H(X,Y )/Nθ where Nθ is the subset of H(X,Y ) consisting of the
functions which vanish at z = θ. Since Nθ is closed, the quotient space is a Banach space
and so is [X,Y ]θ. The Banach space [X,Y ]θ is indeed an intermediate space as the next
proposition states.

Proposition A.3.3. Let θ ∈ (0, 1); then

Y ↪→ [X,Y ]θ ↪→ X.

Proof. Let f ∈ Y . The constant function F (z) = f belongs to H(X,Y ) and

‖F‖F(X,Y ) = max{‖f‖X , ‖f‖Y } ≤ c‖f‖Y

for some c > 0. Therefore f = F (θ) ∈ [X,Y ]θ and ‖f‖[X,Y ]θ ≤ c‖f‖Y . The other
embedding is a consequence of the maximum principle. Indeed if f = F (θ) with F ∈
H(X,Y ) then

‖f‖X ≤ max{sup
t∈R

‖F (it)‖X , sup
t∈R

‖F (1 + it)‖X}

≤ cmax{sup
t∈R

‖F (it)‖X , sup
t∈R

‖F (1 + it)‖Y }

= c‖F‖H(X,Y )

so that f ∈ X and ‖f‖X ≤ c‖F‖H(X,Y ).

In general [X,Y ]θ does not coincide with any (X,Y )θ,p. If X,Y are Hilbert spaces
then the equality holds for p = 2, that is

[X,Y ]θ = (X,Y )θ,2 0 < θ < 1.

In the non Hilbertian case there are no general rules.

Two other useful facts are recalled here, one concerning the dual space of such complex
interpolation spaces and the last proves that [X,Y ]θ are actually interpolation spaces.

Theorem A.3.4. (Dual space) Let θ ∈ (0, 1). If Y is dense in X and one of the two
spaces X or Y is reflexive, then

[X,Y ]′θ = [Y ′, X ′]1−θ. (A.16)

This theorem is a consequence of the results in A.P. Calderón [12]. For the proof we
refer to [12].
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Theorem A.3.5. Let (X1, Y1), (X2, Y2) be complex interpolation couples. Assume that
T ∈ L(X1, X2) ∩ L(Y1, Y2), then the restriction of T|[X1,Y1]θ is in L([X1, Y1]θ, [X2, Y2]θ)
for every θ ∈ (0, 1). Moreover,

‖T‖L([X1,Y1]θ,[X2,Y2]θ) ≤ (‖T‖L[X1,X2])
1−θ(‖T‖L[Y1,Y2])

θ.

For the proof and a complete analysis of these spaces we refer to [46].




