Chapter 5

BV functions and parabolic
problems: the second
characterization

In this chapter we present a second characterization of BV functions obtained using
in a different way the semigroup 7'(¢) generated by the L' realization of

A= Z Di(aij (x)Dj) + Z bl(l‘)Dl + C(.I?) (51)
i,j=1 i=1
with coefficients
ai; € WQ’OO(Q) b;, c € LOO(Q> (52)
satisfying (2.107) and with homogeneous boundary condition given by B in (2.5); in that
case, it is possible to associate a positive function p(¢,z,y) € C}((0,00) x Q x Q) to the
semigroup T'(¢) (see [45, Sections 5.3, 5.4] for more details) generated by (A;, D(A1))
and the following representation holds

(T(t)uo) () = / Pt y)uo(y) dy. (5.3)

This function p(t,z,y) is called the kernel of T'(¢t) and this formula is a keystone for
proving some interesting relations between BV functions and solutions of parabolic ini-
tial boundary value problems; more precisely, in the spirit of [33], we give a complete
characterization of sets of finite perimeter and then, using it in connection with the
coarea formula, we prove that

VA
Dula() = Jim 3 [ [ pit.a,)lu@) = ulw) dyd (5.9

where |Du|4 denotes the A-weighted total variation of u. This characterization is analo-
gous to some results in [8], [14] and [27], [33], where general kernels depending on |z — y|
are considered.
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5.1 The heat kernel in R"

In [27], Ledoux investigated in a different perspective some connections between the
heat semigroup (W (t));>0 on L*(R™) and the isoperimetric inequality.
We recall that the classical isoperimetric inequality in R™ states that among all subset
E C R™ with fixed volume and smooth boundary, Fuclidean balls minimize the surface
measure of the boundary. In [27] Ledoux observed that the L?— inequality for the Gauss-
Weiesrstrass semigroup in R"

IW(t)xEel2@®e) < IW(Et)xsllL2@m t>0 (5.5)

for sets E with smooth boundary and with |E| = |B| can be used to prove the isoperi-
metric inequality. In order to reach this, he provided an estimate for the L? norm of
W (t)xE in terms of the perimeter of F in R™. We refer to [27, Proposition 1.1] for the
proof.

Proposition 5.1.1 (Ledoux). For every subset E of finite measure in R™ and smooth
boundary OF and for every t > 0, the inequality

[ Wsta <[ Lpm) 59

holds.

Moreover, if B is an Euclidean ball, he checked that

lim \/? . W(t)xp(z)dx = P(B). (5.7)

t—0 t

Finally if |E| = | B|, then the L?- inequality (5.5) is equivalent to the following
. W(t)xe(x)ds > . W(t)xp(x)dz. (5.8)
This is easy to see; in fact,
[ W@ dr= [ WOxs@e @)

= W(t)xe(z)(l — xg(x))de
R

= [ Wns@de - [ WHxs@)xs()de
R™ R”

— W (E)xellr ey — /R W (/2)x5(2)W (t/2) x5 () d
= [IxellLi@n) — IW(t/2)XEl L2(r7)
> [IxBllor @) — IW(t/2)xBl L2R")

= [ W(t)xs(z)d,
Be
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whence

W(t)xe(z)dx > W (t)xp(z)dx.
Ee Be

Putting all these results together it is easy to prove that (5.5) implies the isoperimetric
inequality. Indeed, under properties (5.6)-(5.8), for every t > 0

P(E) > \/f . W(t)xg(z)dx > \/f . W (t)xp(x)dx
(B)

and ast — 0, P(E) > P
Notice that the reverse of the Ledoux result is due to the following Riesz-Sobolev in-
equality (see [28, Theorem 3.7]):

/ f(@)g(x — y)h(y)dzdy < / [ (@)g" (x — y)h* (y)dzdy. (5.9)
R” xR" R xR"

where f*, g*, h* denote respectively the spherical symmetrization of f, g, h. Now, taking
f=h=xg and g = g* = G¢(-) (where G¢(z) denotes the heat kernel in R") in (5.9), so
that f* = h* = xp, the inequality (5.5) follows immediately:

W (Oxeli@ey = R’W(Qt)XE(w)XE(x)dx

/ Gar(x — y)xe(z)xe(y)dedy
R xR™

IN

/ Gat(z — y)xB(x)xB(y)dedy
R xR

X W (2t)xp(2)xp(x)dzr = |[W(t)xB[72@mn

Thus we can state the following equivalence.

Theorem 5.1.2. Let E, B be subset of R™ with |E| = |B|, B an Euclidean ball. Then

P(E) > P(B) e HW(t)XEHLZ(R") < ||W(t)XBHL2(R") fOT’ all t > 0. (510)

An immediate interpretation of (5.10) can be deduced by taking into account that
in our assumption, (5.5) is equivalent to (5.8) and that [,. W (t)xe(x) dz measures the
amount of heat that is outside the set E at time ¢ > 0. Therefore (5.10) tells that among
all reqular sets of the same volume and at the same initial temperature, the Fuclidean
ball (having minimum perimeter) is that which minimizes the heat outflow.

In [33], formula (5.7) has been generalized to all sets of finite perimeter. The proof
of such result is based upon the measure-theoretic properties of the reduced boundary.
Moreover, in [33] it is also proved that the finiteness of the limit on the left hand side
characterizes sets of finite perimeter.

Let us point out that the same characterization of finite perimeter sets is also proved,
following a different approach based on the study of behavior of the difference quotient
of u, in the papers [8], [14], [36], where convolution kernels more general than the Gauss-
Weierstrass one are considered. In [33] the following theorem is proved.
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Theorem 5.1.3. Let E, F C R™ be sets of finite perimeter. Then the following equality
holds:

lim ﬁL(XE(m) —W(t)xe(z)) de = / ve(z) - vp(x)dH" (2). (5.11)

=0 FENFF

PROOF. Since .
W(t)xe — xg = / AW (s)xrds,
0
we have

/F(W(t)xE XE)dI/Ot/F(AW(s)XE)dxds.

Moreover, by (4.6), integrating by parts we obtain

/ AW(s)xp)dr = [ AW()xs@)yr(@de=— [ DaW(s)xs(e)- dDxr(z)
F R» R

- D, W (s)xe(z) - vp(z)dH" " (2).
FF

Notice that, if we define for every x € FE and s > 0 the measures

n E—-xz
d,us,z—ﬁ L(\/§>7

y—x
and set z = =———, we have

NG

lz—y|? Jz—y|?
e 4s (:E—y) e~ 1=
o e—l2I?/4 ;
T s Je (At
1 o 121%/4

dpts o (2).
35 Jun (AW (?)
Moreover, setting, for every z € FE,
Hypy={2z€R": z-vp(z) > 0},

the existence of the approximate tangent plane for x € FE, see (4.1.5), implies that the
measures [t . are locally weakly® convergent as s — 0 to the measure

0 if v € E°,
e =14 L7 ifx e B,
EnLH,,E(w) ifx € FE.

Moreover for every € > 0 we can find a compact set K C R™ such that

), ) dsl) @ )
2 VFp\X) 77— 75 Qs z(Z <eg, / 2 Vp(T)——Faus(2) <&
R"\K (471')”/2 R"\K (47T)n/2
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hence, since y, , are locally weakly* convergent as s — 0 to ji,

. o—l2l?/4 o122/
ll_r% - z- up(m)Wdus’m(z) = /n z- Z/F(x)wdum. (5.12)

Summing up, we can write

T — f n—1
\/Z/F(XE—W(t)XE)d e J/ NG g(z,8) ds dH"'(z), (5.13)
where g : FF x (0,t) is given by

o= [ et
and by (5.12) we have

/ Iz z/p(x)eflzl2/4dz forx e FENFF
Hy g ()

0 formE(EOUEl)ﬁ}'F,

lim g(z,s) =

s—0t

where EY, E! are defined according to (4.8). This implies that for all € > 0 there exists
to > 0 such that if ¢ < tg and = € (E° U E') N FF, then

ds = 2¢.

1 [
7 mmee ez [
Viho 275 =Vid 5
Now, by Theorem 4.1.7, we have that H"~1(9*E \ FE) = 0, then the right hand side of
(5.13) reduces to the integral on FE N FF and we obtain that there exists

: T _ — o217 /4 n—1
gm\ﬂ Joe-wonde = [ [ @ s o)

Hy g2

(47) n/2 /J-‘Em}‘F/ ~vp(2))(z- VE(I))€7|Z| M dzdH™ 1 (z)

”E(T)

= / ve(z) - vp(x)dH" (),
FENFF
because vp(z) = (vg(z) - vr(x))ve(z) for H" l-ae. 2 € FENFF and

/ z- VE(m)e*‘Z|2/4dz = 2(47)(n—1)/2 Ve FE.
H

v (z)

O

Remark 5.1.4. Notice that if | '\ E| = 0 in the preceding statement, then vg(z) = vp(z)
for H" '-a.e. x € FE N FF, hence the equality

%in[l)\/>/ (xg —W(t)xg)de =H""Y(FENFF) (5.14)

holds.
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As a special case, we may take E = F' in the above theorem, and obtain the following
result, which generalizes formula (5.7).

Theorem 5.1.5. Let E C R™ be a set of finite perimeter; then the following equality
holds
lim /> [ W(t)xede =P(E). (5.15)
t—0 t Ec

PROOF. Since |W(t)xk| 11 (r») = |E| for all t > 0, we obtain

/ (x — W(t)x) di = / (xi = W) — xpe)de = [ W(t)xs da
E n Ec

and the assertion follows inserting F' = E in (5.14). O

A sort of reverse implication is also stated.

Theorem 5.1.6. Let E C R™ be a set such that either E or E° has finite measure, and
li f— W(t dx < .
im in \[/EC (t)xE dz < 400

Then E has finite perimeter.
PROOF. Assume that |E| < +00. We can write

(W(t)xe, xBe) /n Yo (2)xE (@ + Vy)e W 4 dyda

Sis

1
(477)”/2\@/”
_ 1 e*ly\2/4/( (@) - x&() (x))dscd
(Am) 2T e PV T AR !

0 W\[/ e/ (1] - 1B 1 (2~ Viy)]) dy
1 _
1 / ‘y|e—|y\2/4 |EA(E — ﬂy)'dy
2(4m)n/2 Jra Vily| ’

where EAF = (EUF)\ (ENF) . Then, if we define

|EA(E — tv))|

D,xp| = liminf
|Dyxp| = lim in ; ,

from the previous estimate we get that

le—lvi?/a |[EA(E — Viy)|

2
lyle /4Dy 1 xeldy < liminf/ lyle dy < +o0.
/n y/lyl +—0+ R \/ﬂy|

Noticing that
_ 2
| ke Dy pxeldy = Co [ Dol
R” Sn—l
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we have proved that

/ |D,xE|ldv < +00.
Sn—1

This implies that the function v — |D,xg| is finite for a.e. v € S"~1; in particular, there
exist M > 0 and an orthonormal system of coordinates vy, ..., v, of Lebesgue points of
|D,x E| such that

Dy, x| <M, VYi=1,...,n.
Without loss of generality, we can assume that v; = e;; now, if ¢ € C}(R"), the function

¢z +te;) — ¢(x)

Pi(z) = ;

is uniformly convergent to 9;¢(x). This implies that

| xe@osws = tim [ xu@)ola)d

R"
But
/n xE(2)dy (z)d = / XE(r — tez) — XE(x)(b(x)dm,
hence
’/ xg(2)9e(2)dz| < ||¢|IOO|EA<Et—+t€i)|.

From this it follows that

|EA(E + te;)]
t
= |@llocl Dixel < M||¢]|oo-

’/n XE(7)0;¢(z)dx

< lIglloo lim inf

In the end, we have proved that
/ xe(2)div ¢(v)dr < nM||¢|ls, Vo€ CLHR™),

and then xg € BV(R"). O

In connection with these results, it seems to be interesting to pursue the investigation
of the relationships between the perimeter of a set in a domain and the short-time
behavior of the semigroup T'(t) generated by a more general operator like (A1, D(A1)).

Remark 5.1.7. In what follows Gaussian upper and lower bounds of the fundamental
solution associated with the operator 0; — A are of relevant importance. They can be
found in Appendix B and are used in a form neglecting e~*. This is not important for
our computations since we are interested in the behavior of T'(t) for small ¢, see Remark
B.2.1.
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5.2 Preliminary results for problems in a domain

For every s > 0 and zq € (2, we set

Q—LE()
NG

and, given f : Q@ — R, f5%(y) = f(zo + /sy). With this notation, we define the
operator A%%0 on %% by

A (y)o(y) = div(A*™ (y) Du(y)) + Vs(B™ (y), Dv(y)) + sc™™ (y)v(y)

= Z ahk(xo-kx/gy)aaha 7 ( +\[Z (ZDhth x0+\fy)> =7 )

h,k=1 k=1 \h=1

Q5% —

={yeR" 12+ sy € Q}

+/5 ) bnlwo + ﬁy)%(y) + sc(zo + vsy)v(y),
h=1

and the operator A* on R™ by

n
0%v

A*v(y) = Z ahk(@w(y)-

By setting © = g + /sy, it is easily seen that A4%%°(y) = sA(x). We have the following
lemma.

Lemma 5.2.1. Setting u(t,z) = T(t)ug(x), we can define the function v : (0,4+00) X
Q%% — R by v(t,y) = u(ts, zo + v/sy); then v is the solution of the problem

Ow = A5* (y)w  in (0, +00) x Q%0
w(0,y) = uy™(y) in QO (5.16)
(A**Dw,v) =0 in (0,400) x 9Q*%0.

PROOF. By definition, we have v(0,y) = u(0,z¢ + v/sy) = uo(zo + /sy) = ug ™ (y).
Moreover, if we set © = xo + /sy, we have that 9/9y" = /50/0x" and also that the
unit outward normal to 9Q%*° at y coincides with the unit outward normal to 0f) at z;
therefore,

<As,zo(y)Dy,U(t7y), y(y)> = \/E<A(1‘)Dxu(t871‘), I/(I)> - O

In the same way, we have
Opu(t,y) = su'(ts,v0 + V/sy) = st (ts, x) = sA(z)u(ts, ) = A" (y)v(t,y),

where 1/ denotes the derivative of u with respect to its first variable, and this concludes
the proof. OIn order
to follow the computations in Section 5.1, based on the Gauss-Weierstrass kernel G we
recall that the semigroup generated by A, A%*, A®, are represented through an integral
kernel that will be introduced with a coherent notation (see e.g. [45]). We also denote
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by (T**°(t))>0 the semigroup associated with problem (5.16) and by p*®°(t,y, 2) its
kernel. We also denote by (T'%°(t));>0 the semigroup associated with the problem

{ dw(t,y) = A™(y)w(t,y) in (0,+00) x R"
w(0,y) = wo(y) in R"

and by p*(t,y, z) its kernel.
Lemma 5.2.2. For the kernels the following holds

t _ —
pt,x,y) = s~ "/217”"( it Y xo)- (5.17)

s’ Vs s

PROOF. The proof of Lemma 5.2.1 gives that v(t,y) = T5% (t)us ™ (y) = T(ts)uo(zo+
V/8y); using the kernels, we get that

t S, T — Zo
t dy =T(t =T%% | — o
| ottty = T0ula) = 7 (1) e (222
t r—=x
:/Qmo po (S,\/go,z) uo(zo + V/s2)dz
t v—=x -
_ —n/2 s,zo [ oY 0

The arbitrarity of ug gives the thesis. O

We have the following result.
Proposition 5.2.3. For every f € LY(R™), let u®(t,£) be the solution of the problem

Orw(t, &) = A>*(&w(t, §) in (0, +00) x Q%%
(A(z + /3&)Dw(t, £),vgs=(€)) =0 in (0,400) x ON5*
w(0,8) = f(§) in Q5"

and let u*(t, &) be the solution of the problem

{ dw(t,§) = A" (§w(t,§) in (0,400) x R”
w(0,8) = (&) in R" '

Then for every t > 0 we have that u®*(t,-) converges to u®(t,-) in L]

loc

(R™) as s — 0.

PROOF. We start by taking f € C.(R™) and denoting by «**(¢,£) the solution of the
problem

t
(A%F(&)Dew(t,€),v(€)) =0 in (0,400) x 0> (5.18)
w(0,8) = f(§) in Q%
Since u®* is a classical solution, for every regular function ¢ : [0,t9] x R"” — R with
©(tg, ) = 0, the following holds:

{ dw(t, €) = A*(Hw(t, €) in (0, +00) x Q7

- [ e / e o @t + o) (519)
dus(t oy Op(t
af,f[ G285 1 ot € (o) Jaear
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Moreover, notice that sc¢** — 0, a;y — apk(x), /sby™ — 0 uniformly on compact sets
as s — 0.

As an auxiliary tool, let us use the L? theory, see e.g. [45, Section 5.4], recalling that
there is M > 0 independent of s € [0, 1], such that

[w®* ()| 2oy < M| fllz2 ey < M fllL2@n), (5.20)
M M
Dus*(t oy < 2 oy < 2 ", 5.21
[ (Ol z2(@em) < \/in”L?(Q ) < \/Z”fHL?(R ) (5.21)
and u v
| D?u* ()| p2(qer) < THfHLz(QW) < THf||L2(R")~ (5.22)

These conditions imply that for every bounded open set A € R™, t > 0 fixed and
so small enough, the family (u®%(t,-))o<s<s, is bounded in W22(A), and then, up to
subsequences, it is strongly convergent in W12(A) and also in Wh1(A).

We can now fix a countable dense set D C [0, to] in such a way that u*»* (¢, -) converges
to some g(t,-) in WhHL(A) for every t € D and some sequence s;, — 0. By (3.2) we get
that

to
(12 = e sy = | [ 00t 1)t
t1

L1(Qs:7)

to t2 1 to

S / ||A573”’u,5@(t,-)HLI(Qs,w)dt S cle”Ll(Qva)/ gdt S Cl”f”Ll(R") log 57
tl tl

that is, the function t — u*®(t,-) is continuous from (0,tg) to L!(£2%%); in particular, if
we consider t1,ty € D, then the inequality

llg(ta, ) —g(ts, Mlzray < llg(ta, ) — w™ (t2, )L (a)
+ (JuE (b, ) — w () || rcay + [[w  (t,-) — gt )l 2ray

holds and the convergence of u** on D shows that we can extend ¢ to a continuous map
from (0, ) to Li, .(R™); we also notice that by (3.4) we deduce also that g(¢,-) € Wh1(A)

loc
for every t € (0,tp). By continuity, and by the convergence of u*»*(t,-) on D we deduce

that u®®(t,-) — g(t,-) in L (R™) for every t € (0,%p). In addition, conditions (3.1)
allow us to apply the dominated convergence theorem, and then, taking the limit in
(5.19), we get

- [ r©00.0d = [ [ (0006009~ (4@)Deett.). Deg(1.)) )

for all ¢ as above, and then (see e.g. [40, Prop. 2.1, Ch. III]) ¢(¢, -) is the solution of the
problem

O (t,€) = ank(e) 5oaer (£:€)  in (0,0) x R
w(0,€) = f(€) in R"

for every f € C.(R™). Then, it follows that
90, = (0.6 = [ p(te )z,

n
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where using the Fourier transform the kernel p* is given by

. 1 (A (2)(E = 2), (€ - 2))
P68 2) = e det A2 ()] P <_ o > - 63

By the density of C, in L' we conclude. O

The following statement is an immediate consequence of Proposition 5.2.3.

Corollary 5.2.4. For every t > 0 and a.e. £ € R", the family of measures du** =
poT(t, &, )AL L Q5T is weakly* convergent to the measure du® = p*(t,&,-)dL™ as s — 0,
that is, for every o € C.(R™) the following equality holds

lim <p(z)ps’x(t,§,z)dz:/ o(2)p" (¢, &, z)dz.

s—0 Os.z n

Henceforth, given the function p(¢,&, z), we shall denote by Dip(t, &, z) the gradient
with respect to the first spatial variables £ and by Dap(t, €, z) the gradient with respect
to the second spatial variables z.

Proposition 5.2.5. For everyt > 0 and a.e. £ € R", the equality

lim [ (Dap™(t €, 2), 0(2))dz = / (Dap™ (£, €, 2), 0(2))d= (5.24)

s—0 Qs n

holds for every ¢ € L>*(R"™,R"™).

PROOF. We start by considering ¢ € C(R"™,R"); we choose sy > 0 in such a way
that supp ¢ C Q%% for all s < sp; then

| i) p@nd = - [ g sdivet)a:
and then, by Corollary 5.2.4

tim [ (Dape(6 2oz = lim = [ p (e 2)divp(z)dz
S— Qs S§— Qs,z

= f/npz(t,f,z)divgo(z)dz: /n(Dgpm(t,ﬁ,z),gﬁ(z»dz.

For an arbitrary ¢ € L*(R™, R™) we use an approximation procedure.
First of all recall that for every € > 0 we can find R > 0 and sg > 0 such that

/ |D2ps,z(t7§az)‘d2’ S g, / |D2pm(t7§72)‘d2’ S €.
Q**\Br(0) R™\Br(0)
for all s < s9. Now, let n € C2°(R"™),0 <7 <1,n7=1in Bg(0) and n = 0 in R™\ By(0),

and select € < R/2. Then . = p. * () € CZ(R",R") such that ||¢ — @ || 1o (B (0)) < €
for all 1 < p < 0o and then

/ (Dap®®(t,€, 2), p(2))dz = / (Dap®®(t,€, 2), e (2))dz
sz sz
+/ (Dap™*(t,€, 2), (¢(2) — @e(2)))dz
Q**NBR(0)

+/ (Dap™*(t,€, 2), (p(2) — = (2)))dz.
Qs*\Br(0)
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Taking into account that p*®(t, &, z) = s"/?p(ts, x + /€, x 4+ \/sz) and also that

Dop®®(t,€,2) = D.s"?p(ts,x + /5,2 + \/52)
sV Dop(ts, x + VsE,w + V/s2),

by (B.2) we obtain
|/ (Dap™(8,6,2), (p(2) = 9(2)))d3
Q7N BRr(0)
o 5 \1/2
<O = ol ([ Daplts,o+ Va4 VE)Pdz) < O
Qs.x
with C independent of s. Of course, the inequality
[ (Dap(t.6:2), (0(2) — e (o) < O
Br(0)

holds as well, and then

| [ (D62 o)z - [

s—0

<tim| [ (Dop™(1,6,2), (o(2) — 02 (=)l
Qs=NBr(0)

(Dap™(t, &, 2), <p(z)>dz‘

n

s—0

s—0

| [ (Dap™* (1,6, 2), (9(2) — 9e(2))) ]
Q==\Bg(0)

+ lim /Q (Do (0,2 el - / (Dap® (£, €, 2), oo (2)d2)

s—0 n

| [ (Dapt(t.62), (6(2) — 02
Br(0)

s—0

s—0

+ lim / (Do (1,6, 2), (9(2) — pe(2)))de] < Ce
R"\Br(0)

and the thesis follows from the arbitrariness of €. O

5.3 A second characterization of BV functions

The main step in the proof of (5.4) is the following result, where an asymptotic
formula relating two sets of finite perimeter is shown. In the statement, we assume that
E has finite measure in order to give a meaning to the left hand side in (5.27) below.
But, notice that, since E has finite perimeter in €2, then by the relative isoperimetric
inequality in the regular set )

min{|ENQ,|Q\ E|} < kP(E, Q)"

either |[EN Q| or |2\ E| is finite. Therefore, if |E N Q| is infinite, then |\ E| is finite
and (5.27) applies with Q\ E in place of E.
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Proposition 5.3.1. Assume that Q be as in (2.2). Let B be as in (2.5), and consider
Ay = div(AD), with A = (a;j);; satisfying (2.107)—(2.108); let (To(t))e>0 be the semi-
group generated by the realization of Ay in L' () with homogeneous boundary condition
Bu = 0; then, if E, FF C R™ are sets of finite perimeter in §2, the following holds

lim \/f / (e() = Tolt) i (1)) = / (A(2)vp (), vp(2) dH" ().

QNFFNFE

ProoFr. We have

| @oxe - e - /Q N / L Ty(s)xm(x)dsda

- / AoTo(s)xe(x)dads
QNF

//mFdwx 2)DaTo(s)x s (x))dads

We introduce now the kernel pg . (¢, z,y) of the semigroup generated by the adjoint op-
erator Aj of Ag; by the symmetry of the matrix A, the operator Af = Ay. In this way
we have that po(¢, z,y) = po.«(t,y, ) (see for instance [45, Theorem 5.6]) and since

3 hi7 - t77 . *t,7 hz_ *t77
szo(txy)—hm po(t,x + he;,y) po(my):hmpo,(yx+ ei) — po«(t,y, )

h—0 h h—0 h

S, ot Y—xTo x—=x he; S,T0 Yy—To T—T

gy PO e+ B (S, e, =)

h—0 h

; t y—x9 T—x

— g~ (n¥1)/2 i s.wo ( Y 0 0)

=s
2p07* 87 \/g ) \/g

where D} denotes the i-th component of the gradient with respect to the second variables.
Then for t = s and = = xq, Dpo(t,z,y) = t~"*+D/2Dypl L, y\[aj 0); hence integrating
by parts we get

/ div(AD,To(s)xe(x))dz = / (D, To(s)xe(z), A(z)ve(z))dH" ' (2)
QnF QNFF

-/ . | Das.a.). Alaywr(a) dydr @)
B /Qﬂ]-'F /QmE s_("+1)/2<D2p81f (1’ %’ 0) ,A(x)VF(x)>dde”_1(x)

1
__L / / (Dapl (1, 2,0), A(w)vr () dzdH" " (z)
Vs JanFr Jasengss '
1 S,T S, T n—
‘*/ / (Dap (1, 2,0), A(w)vi(@))dp™* ()dH " (2),  (5.25)
Vs Janrr Jrn
where we have denoted by p*® the measure
u®® =L (25T N EY). (5.26)

These measures verify the following properties:
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1. ps® =% Yios 0 if ¢ € EO;
2.yt S L0 if ¢ € B

3. us” Liog L'_H,, ) for x € FE, where H,, () = {z € R" : (z,vp(z)) < 0}.

These facts imply that, for x € EO,/ (Dapys(1,2,0), A(z)vp(x))dp** (z) — 0; indeed

’ /n <D2p(s)f:(1, 2,0),A(z)vp(x)) du* ()
S(nﬂ)/z’ / (Dapo(s, 25+ ), A(x)vp(a)) du™*(z2)

2
§01||A||oo/ e dp(2).
R’VL

Now, let € > 0 be given, we consider nn € C°(R"™) such that / (1—mn) e bl du®®(z) <

n

g, then there exists so > 0 such that if |s| < sg

/ et dpue(z) = / ne Y dpse () +/ (1 —n)e = dpse(z) <e.

Moreover, for x € E'

/ e () (Dap (12,0, Al (a)) dz = / (Daps® (1, 2,0), A()vp(z)) dz

Qs.x

v / (Dapi™(1, 2,0), A(x)vp()) dz
Q& ‘E\E.S @
Now,

/ (Dapyi(1,2,0), A(z)vp(z)) dz — A(z)vp(z) - Dapg . (1,2,0)dz =0
e R~

and for every € > 0 there exists ¢y small enough, such that for |s| < tg, by (B.2)
[ D 0d <
Qs :):\Es,:l;
therefore if x € E' and s is sufficiently small,

\[/ f Qs rAEsT <D2p(sJii(17Z’O)vA('r)VF(«T»dZ < 2e.

Now, taking into account that H"~1(9*E \ FE) = 0, we can consider only points z €
FF N FE; in this case we obtain that

[ (D120 AGwe )i (2) — [ (Dapf(1,2,0) Alwve(a)

Hyp @)
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Taking into account (5.23) and the symmetry of A, we get that

1 1 1
2amp et A7) P (AT @)% 2) 4 A7 @)z,

D2p§,*(17 2, 0) = -
and then, since for z € FF N FE we have vp(z) = (vg(x),vr(z))ve(z)

/H <D2pg,*(]—7Z,O)yA(fE)I/F((E)>dZ:

v (@)
= S AT o (A7) st
_ _<VE(-T)7;/V2F($)> / €_|Z|2<Z,A1/2($)VE($)>dZ.
T Hp172(ay0 g (o)
For the computation of this last integral, we consider an orthonormal basis {e1,...,e,}
of R™ with
_ AP (@)vp(r)
T AP @)

we then obtain

J,
n—1)/2

0 (
_ W("—l)/Q‘Al/Q(x)yE(xﬂ/ ne Fndzy, = —WT|A1/2<35)VE($)|'

<Z,A1/2(SC)I/E(IE)>67|Z|2CZZ = |A1/2(x)yE(x)|/ zne 2 dz

A/ 2(z)vp (x) Ha1/72(0p0p (@)

At the end, we have obtained that

. m .
lim \/7/ (To(t)xE — xg)dx = —/ (VE,I/F>|A1/QVE\CIH L
=0V 1 Jonr QNFFNFE
O

With a perturbation argument we establish the result stated in Proposition 5.3.1 for
the semigroup T(t) generated by the complete operator (A1, D(A1)) in L'(€2).

Theorem 5.3.2. Assume 2, B be as in Proposition 5.3.1 and let A be as in (5.1) with
coefficients satisfying (5.2). Denote by T(t) the semigroup generated by (A1, D(A1)) in
LY(Q), then, if E,F C R™ are sets of finite perimeter in Q, the following holds

tin [ [ (et = TOne@as = [ (At e ). 620

PrOOF. By using Proposition 5.3.1 and the notations fixed there, it suffices to prove
that

tim == [ (Ty(e)xe(@) = T =0 (5.28)

In order to get the claim, we set u(t,x) = (T'(t)xg)(z) and v(t,x) = (To(t)xr)(x), so
that the function z = u — v solves the problem

Oz — Az = (B, Dv) + cv t>0,2z€Q
z(0)=0 x €
(ADz,v) =0 t>0,x€ 0N
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and can be written as follows

t
"y = / T(t — 5)((B, Du(s)) + cu(s)) ds. (5.20)
0
Using (3.1) we have
t
o= vl <o [ (1B.DeD oy + ool )ds. (530
If we prove that

lu—vlpi) =o(Vt) ast—0 (5.31)

we conclude. For the last term in (5.30) we have that

/Q (@) To(s)x(2)| d: < eollc]oel N

and then

.1
tim == [ [ lete) o) e ) dods =

For the first term in (5.30), we notice that

D.po(s, z,y))dydzx

< 1Bl Bl / Dapo(s, 2, y)|da
QﬂE’

and using Gaussian estimates (B.2) we get

C
Dxp 37557?/ dmgi
[ 1Dam(s ) =

for some constant C' depending only on the operator A and the dimension n. However
we can write

/Q (B, D, Ty(s)xs)da / dz /Q (B(@). Dol )iy
] (nns o5
= \[/ d:c/Q”nE” x), Dapyi (1, 2 ,0))dz
_ \[/ dx/n ), Dap (1, 2,0) ) (2).

where p** is defined in (5.26) and satisfies 1.,2. and 3. of Proposition 5.3.1. With the
same argument previously used, we can deduce that for x € E° U E', the limit of the
above integral as t — 0 vanishes; then, taking into account that |Q\ (E° U E')| = 0, we
have then obtained that

lim — /// Dypo(s,x,y))| dydxds = 0
P2y o Jors ol

for H* !-a.a. x € E° U E'. Therefore (5.31) is proved and the proof is complete O

Specializing the above result for F' = E° we get the following
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Corollary 5.3.3. Under assumption of Theorem 5.3.1, let (T'(t))i>0 be the semigroup
generated by (Ay, D(A1)) in LY (Q); then, if E C R™ is a set with finite perimeter in ,
the following equality holds:

im (/= T = V2(2)vg(z)|dH" " (z). :

Using an argument similar to the one used in [33, Theorem 3.4] and the lower bound

for the kernel p(t, z,y), it is possible to prove the converse of the statement in Corollary
5.3.3.

Proposition 5.3.4. Let E C R" be a set such that either E or E° has finite measure
i Q, and such that

lim inf —/ T(t)xe(z)dr < 400,
t=0 EenQ

then E has finite perimeter in 2, that is xg € BV (Q).

PROOF. Define Eq := E N Q and assume |Eq| < oo. From (B.17) we have
1
77 ) TOxp@yde= | | p(tz,y)xey)xe: (@) dy dv
ﬁ Ec

L le—ul?
-ﬂn+nml/nv/n oo ) (x0 () — () dy

= % - e*cﬂzP / ) XQ(Q;')XEQ (z\/i+ 1’)(1 — XE(LZ})) dx dz

=S [ o) (i) = Xl (o) dr s

:Cl/ 67c1\z\2|z|‘(EQA(EQ 72\/{5))09‘ dz
n Vilz|
In fact, denoting by
EA(E —t Q
1D, xsl() = lin ing (EEE =) 00
t—0 t
by assumption we get that
—C1|? 2
[ el D 2 () s
< lim inf —/ y)xEe(z)p(t, x, y)dedy < +o0.
t—0 Q><Q

This implies, using an argument similar to that used in Theorem 5.1.6, that there exist
M > 0 such that |D.,xg,|(Q) < M for i =1,...,n. Finally, let ¢ € C}(2,R"); then

L ol + tes) — ()
| xe@Digt@yde = tim_ [ xo(a) : da
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But
te; €
‘/XE(x) p(x + te;) ‘_ ‘/ XEq+t XEQ(x)(p(x)dx
Q
E A FEq +te;)))NQ
< ||so||mm'( ofFo te)) 0%
Thus
EqA(E te; Q
‘/XE@?)DW(SU)W‘ < lellze () limiIlfK al(Fg +te) N4
Q t—0+ t
= ||l Lo ()| De X o [(§2) < M| Lo ()
and
| xe@ive(o) de < n gl o
that is |Dxg|(2) < +o0. O

We are now in a position to prove the main result of this section, namely, the an-
nounced characterization of BV functions (5.4). The strategy is the same as for R™ and
is based on (4.13).

Theorem 5.3.5. Let Q, A, B be as in Theorem 5.5.2, let (T'(t))i>0 be the semigroup
generated by (A1, D(Ay)) in LY(Q) and let u € L*(Q); then u € BV (Q) if and only if

hmlnf—/ (y)|p(t, z, y)dzdy < +o0;
QXQ

moreover, in this case the following equality holds

NG

Du|4(Q) = lim ~—
DU =15 7 o

lu(x) —u(y)|p(t, =, y)dxdy. (5.33)

PROOF. The “if” part. We start by considering u € L'(Q); for 7 € R we denote by
E. ={u > 7} and, since the semigroup is positive and contractive, we obtain that

0 < /hmmf T(t)xE da:d7'<hm1nf—// t)x g, dxdr
=0/t Jpeno EenQ

IN

lim inf 7 e / XE, (@) = x5 (W) |p(t, 2, y)dedydr

= hmlnf—/ lu(z) — u(y)|p(t, z,y)dzdy < +o00
QxQ

and then, thanks to Proposition 5.3.4, almost every level E, has finite perimeter and
equation (5.32) holds. Then, using coarea formula (4.13), we get

Du|A(Q) = ’PA (E;,Q)dr = hm t)x g, dzdr
|
Rt_’O ECmQ

< liminf \/7/ u(y)|p(t, z,y)dedy < +o0
t=0 QXQ

A
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that is u € BV4(9).
The other implication follows from (5.33). To prove (5.33), we define the function

_ ﬁ /E o TOxe ()i

For this function we have the following estimate

lge (T |—\/7‘// AT (s)xE, d:cds \/7‘/ (ADT(s)xE, ,ve, )dH" ™!
E(‘I'_WSZ .7:E naQ

+/Emﬂ <B7DT(S)XET>d:r+/EmQ CT(S)XET)dif)dS'

™ ! n—1
<5 [ (bl [ 10Tl
0

1Bl [ / Duple )y + el [ [ wswdsdy)as
BSn Y ErnQ

Bene Y E-nQ

<cMo(P(E», Q) + min{|E, N Q|, |ES N Q[}) = h(r)

where the last inequality follows from the estimates (B.2) on the kernel p(s,z,y). We
have that h € L*(R) since

/ P(E-, Q)dr = |Du|(£2)
R

and, denoted by u* = max{u,0} and v~ = max{—u, 0},

oo 0
/mm{|E NQ,ESNQ|}dr </ |E; ﬁQ|dT—|—/ |ES N Q|dr

/ / XE, dmd7+/ /XEcdl’dT
z// X{u>7}d7'da:—|—// X{—u>r}drdz

aJo aJo
:/quda:—l—/u*dx:/ |u|d.

Q Q Q

Then we can apply Corollary 5.3.3 and Lebesgue dominated convergence theorem to the
functions g; in order to obtain

/ Pa(Er,Q) dT— lim \/7/ t)x e, dx
Rt%(] ELQQ
. T
= im /T / / (xz. (v) — x. (W) xE, (2))p(t, 2, y) dedydr
=0V t Jr Jaxa

=t /T )~ mingu(o). @) ot )y

since xg, (¥)xEe, (z) # 0 if and only if 7 < min{u(x),u(y)}; finally, the assertion follows
by noticing that min{u(y),u(z)} = 3 (u(z) + u(y) — Ju(z) — u(y)|). O

[ Dula ()






