
Chapter 5

BV functions and parabolic

problems: the second

characterization

In this chapter we present a second characterization of BV functions obtained using
in a different way the semigroup T (t) generated by the L1 realization of

A =
n∑

i,j=1

Di(aij(x)Dj) +
n∑
i=1

bi(x)Di + c(x) (5.1)

with coefficients
aij ∈W 2,∞(Ω) bi, c ∈ L∞(Ω) (5.2)

satisfying (2.107) and with homogeneous boundary condition given by B in (2.5); in that
case, it is possible to associate a positive function p(t, x, y) ∈ C1

b ((0,∞)× Ω× Ω) to the
semigroup T (t) (see [45, Sections 5.3, 5.4] for more details) generated by (A1, D(A1))
and the following representation holds

(T (t)u0)(x) =
∫

Ω

p(t, x, y)u0(y) dy. (5.3)

This function p(t, x, y) is called the kernel of T (t) and this formula is a keystone for
proving some interesting relations between BV functions and solutions of parabolic ini-
tial boundary value problems; more precisely, in the spirit of [33], we give a complete
characterization of sets of finite perimeter and then, using it in connection with the
coarea formula, we prove that

|Du|A(Ω) = lim
t→0

√
π

2
√
t

∫
Ω

∫
Ω

p(t, x, y)|u(x)− u(y)| dydx, (5.4)

where |Du|A denotes the A-weighted total variation of u. This characterization is analo-
gous to some results in [8], [14] and [27], [33], where general kernels depending on |x− y|
are considered.
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5.1 The heat kernel in Rn

In [27], Ledoux investigated in a different perspective some connections between the
heat semigroup (W (t))t≥0 on L2(Rn) and the isoperimetric inequality.
We recall that the classical isoperimetric inequality in Rn states that among all subset
E ⊂ Rn with fixed volume and smooth boundary, Euclidean balls minimize the surface
measure of the boundary. In [27] Ledoux observed that the L2− inequality for the Gauss-
Weiesrstrass semigroup in Rn

‖W (t)χE‖L2(Rn) ≤ ‖W (t)χB‖L2(Rn) t ≥ 0 (5.5)

for sets E with smooth boundary and with |E| = |B| can be used to prove the isoperi-
metric inequality. In order to reach this, he provided an estimate for the L2 norm of
W (t)χE in terms of the perimeter of E in Rn. We refer to [27, Proposition 1.1] for the
proof.

Proposition 5.1.1 (Ledoux). For every subset E of finite measure in Rn and smooth
boundary ∂E and for every t ≥ 0, the inequality∫

Ec

W (t)χE(x) dx ≤
√
t

π
P(E) (5.6)

holds.

Moreover, if B is an Euclidean ball, he checked that

lim
t→0

√
π

t

∫
Bc

W (t)χB(x) dx = P(B). (5.7)

Finally if |E| = |B|, then the L2- inequality (5.5) is equivalent to the following∫
Ec

W (t)χE(x)dx ≥
∫
Bc

W (t)χB(x)dx. (5.8)

This is easy to see; in fact,∫
Ec

W (t)χE(x) dx =
∫
Rn

W (t)χE(x)χEc(x) dx

=
∫
Rn

W (t)χE(x)(1− χE(x)) dx

=
∫
Rn

W (t)χE(x) dx−
∫
Rn

W (t)χE(x)χE(x) dx

= ‖W (t)χE‖L1(Rn) −
∫
Rn

W (t/2)χE(x)W (t/2)χE(x) dx

= ‖χE‖L1(Rn) − ‖W (t/2)χE‖L2(Rn)

≥ ‖χB‖L1(Rn) − ‖W (t/2)χB‖L2(Rn)

=
∫
Bc

W (t)χB(x) dx,
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whence ∫
Ec

W (t)χE(x) dx ≥
∫
Bc

W (t)χB(x) dx.

Putting all these results together it is easy to prove that (5.5) implies the isoperimetric
inequality. Indeed, under properties (5.6)-(5.8), for every t > 0

P(E) ≥
√
π

t

∫
Ec

W (t)χE(x) dx ≥
√
π

t

∫
Bc

W (t)χB(x) dx

and as t→ 0, P(E) ≥ P(B).
Notice that the reverse of the Ledoux result is due to the following Riesz-Sobolev in-
equality (see [28, Theorem 3.7]):∫

Rn×Rn

f(x)g(x− y)h(y)dxdy ≤
∫
Rn×Rn

f∗(x)g∗(x− y)h∗(y)dxdy. (5.9)

where f∗, g∗, h∗ denote respectively the spherical symmetrization of f, g, h. Now, taking
f = h = χE and g = g∗ = Gt(·) (where Gt(z) denotes the heat kernel in Rn) in (5.9), so
that f∗ = h∗ = χB , the inequality (5.5) follows immediately:

‖W (t)χE‖2L2(Rn) =
∫
Rn

W (2t)χE(x)χE(x)dx

=
∫
Rn×Rn

G2t(x− y)χE(x)χE(y)dxdy

≤
∫
Rn×Rn

G2t(x− y)χB(x)χB(y)dxdy

=
∫
Rn

W (2t)χB(x)χB(x)dx = ‖W (t)χB‖2L2(Rn)

Thus we can state the following equivalence.

Theorem 5.1.2. Let E,B be subset of Rn with |E| = |B|, B an Euclidean ball. Then

P(E) ≥ P(B) ⇐⇒ ‖W (t)χE‖L2(Rn) ≤ ‖W (t)χB‖L2(Rn) for all t ≥ 0. (5.10)

An immediate interpretation of (5.10) can be deduced by taking into account that
in our assumption, (5.5) is equivalent to (5.8) and that

∫
Ec W (t)χE(x) dx measures the

amount of heat that is outside the set E at time t ≥ 0. Therefore (5.10) tells that among
all regular sets of the same volume and at the same initial temperature, the Euclidean
ball (having minimum perimeter) is that which minimizes the heat outflow .
In [33], formula (5.7) has been generalized to all sets of finite perimeter. The proof
of such result is based upon the measure-theoretic properties of the reduced boundary.
Moreover, in [33] it is also proved that the finiteness of the limit on the left hand side
characterizes sets of finite perimeter.
Let us point out that the same characterization of finite perimeter sets is also proved,
following a different approach based on the study of behavior of the difference quotient
of u, in the papers [8], [14], [36], where convolution kernels more general than the Gauss-
Weierstrass one are considered. In [33] the following theorem is proved.
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Theorem 5.1.3. Let E,F ⊂ Rn be sets of finite perimeter. Then the following equality
holds:

lim
t→0

√
π

t

∫
F

(χE(x)−W (t)χE(x)) dx =
∫
FE∩FF

νE(x) · νF (x)dHn−1(x). (5.11)

Proof. Since

W (t)χE − χE =
∫ t

0

∆W (s)χEds,

we have ∫
F

(W (t)χE − χE) dx =
∫ t

0

∫
F

(∆W (s)χE) dx ds.

Moreover, by (4.6), integrating by parts we obtain∫
F

(∆W (s)χE) dx =
∫
Rn

∆W (s)χE(x)χF (x)dx = −
∫
Rn

DxW (s)χE(x) · dDχF (x)

= −
∫
FF

DxW (s)χE(x) · νF (x)dHn−1(x).

Notice that, if we define for every x ∈ FE and s > 0 the measures

dµs,x = Ln
(
E − x√

s

)
,

and set z =
y − x√

s
, we have

DxW (s)χE(x) =
∫
E

Dx

(
e−

|x−y|2
4s

(4πs)n/2

)
dy = −

∫
E

(x− y)
2s

e−
|x−y|2

4s

(4πs)n/2
dy

=
1

2
√
s

∫
E−x√

s

e−|z|
2/4

(4π)n/2
zdz

=
1

2
√
s

∫
Rn

e−|z|
2/4

(4π)n/2
zdµs,x(z).

Moreover, setting, for every x ∈ FE,

HνE(x) = {z ∈ Rn : z · νE(x) ≥ 0} ,

the existence of the approximate tangent plane for x ∈ FE, see (4.1.5), implies that the
measures µs,x are locally weakly∗ convergent as s→ 0 to the measure

µx =


0 if x ∈ E0 ,

Ln if x ∈ E1 ,

Ln HνE(x) if x ∈ FE.

Moreover for every ε > 0 we can find a compact set K ⊂ Rn such that∫
Rn\K

z · νF (x)
e−|z|

2/4

(4π)n/2
dµs,x(z) < ε,

∫
Rn\K

z · νF (x)
e−|z|

2/4

(4π)n/2
dµx(z) < ε
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hence, since µs,x are locally weakly∗ convergent as s→ 0 to µx

lim
s→0

∫
Rn

z · νF (x)
e−|z|

2/4

(4π)n/2
dµs,x(z) =

∫
Rn

z · νF (x)
e−|z|

2/4

(4π)n/2
dµx. (5.12)

Summing up, we can write√
π

t

∫
F

(χE −W (t)χE) dx =
√
π

(4π)n/2

∫
FF

1√
t

∫ t

0

1
2
√
s
g(x, s) ds dHn−1(x) , (5.13)

where g : FF × (0, t) is given by

g(x, s) =
∫
Rn

e−|z|
2/4z · νF (x)dµs,x(z),

and by (5.12) we have

lim
s→0+

g(x, s) =


∫
HνE(x)

z · νF (x)e−|z|
2/4dz for x ∈ FE ∩ FF

0 for x ∈
(
E0 ∪ E1

)
∩ FF,

where E0, E1 are defined according to (4.8). This implies that for all ε > 0 there exists
t0 > 0 such that if t < t0 and x ∈

(
E0 ∪ E1

)
∩ FF , then∣∣∣∣ 1√

t

∫ t

0

1
2
√
s
g(x, s) ds

∣∣∣∣ ≤ 1√
t

∫ t

0

ε√
s
ds = 2ε.

Now, by Theorem 4.1.7, we have that Hn−1(∂∗E \ FE) = 0, then the right hand side of
(5.13) reduces to the integral on FE ∩ FF and we obtain that there exists

lim
t→0

√
π

t

∫
F

(χE −W (t)χE) dx =
√
π

(4π)n/2

∫
FE∩FF

∫
HνE(x)

z · νF (x)e−|z|
2/4dzdHn−1(x)

=
√
π

(4π)n/2

∫
FE∩FF

∫
HνE(x)

(νE(x) · νF (x))(z · νE(x))e−|z|
2/4dzdHn−1(x)

=
∫
FE∩FF

νE(x) · νF (x)dHn−1(x),

because νF (x) = (νE(x) · νF (x))νE(x) for Hn−1-a.e. x ∈ FE ∩ FF and∫
HνE(x)

z · νE(x)e−|z|
2/4dz = 2(4π)(n−1)/2 ∀ x ∈ FE.

Remark 5.1.4. Notice that if |F \E| = 0 in the preceding statement, then νE(x) = νF (x)
for Hn−1-a.e. x ∈ FE ∩ FF , hence the equality

lim
t→0

√
π

t

∫
F

(χE −W (t)χE) dx = Hn−1(FE ∩ FF ) (5.14)

holds.
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As a special case, we may take E = F in the above theorem, and obtain the following
result, which generalizes formula (5.7).

Theorem 5.1.5. Let E ⊂ Rn be a set of finite perimeter; then the following equality
holds

lim
t→0

√
π

t

∫
Ec

W (t)χE dx = P(E). (5.15)

Proof. Since ‖W (t)χE‖L1(Rn) = |E| for all t ≥ 0, we obtain∫
E

(χE −W (t)χE) dx =
∫
Rn

(χE −W (t)χE)(1− χEc) dx =
∫
Ec

W (t)χE dx

and the assertion follows inserting F = E in (5.14).

A sort of reverse implication is also stated.

Theorem 5.1.6. Let E ⊂ Rn be a set such that either E or Ec has finite measure, and

lim inf
t→0+

1√
t

∫
Ec

W (t)χE dx < +∞.

Then E has finite perimeter.

Proof. Assume that |E| < +∞. We can write

1√
t
〈W (t)χE , χEc〉 =

1
(4π)n/2

√
t

∫
Rn

∫
Rn

χEc(x)χE(x+
√
ty)e−|y|

2/4dydx

=
1

(4π)n/2
√
t

∫
Rn

e−|y|
2/4

∫
Rn

(
χE−

√
ty(x)− χE(x)χE−√ty(x)

)
dxdy

=
1

(4π)n/2
√
t

∫
Rn

e−|y|
2/4
(
|E| − |E ∩ (E −

√
ty)|
)
dy

=
1

2(4π)n/2
√
t

∫
Rn

e−|y|
2/4|E4(E −

√
ty)|dy

=
1

2(4π)n/2

∫
Rn

|y|e−|y|
2/4 |E4(E −

√
ty)|√

t|y|
dy,

where E4F = (E ∪ F ) \ (E ∩ F ) . Then, if we define

|DνχE | = lim inf
t→0+

|E4(E − tν)|
t

,

from the previous estimate we get that∫
Rn

|y|e−|y|
2/4|Dy/|y|χE |dy ≤ lim inf

t→0+

∫
Rn

|y|e−|y|
2/4 |E4(E −

√
ty)|√

t|y|
dy < +∞.

Noticing that ∫
Rn

|y|e−|y|
2/4|Dy/|y|χE |dy = Cn

∫
Sn−1

|DνχE |dν,
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we have proved that ∫
Sn−1

|DνχE |dν < +∞.

This implies that the function ν 7→ |DνχE | is finite for a.e. ν ∈ Sn−1; in particular, there
exist M > 0 and an orthonormal system of coordinates ν1, . . . , νn of Lebesgue points of
|DνχE | such that

|DνiχE | ≤M, ∀i = 1, . . . , n.

Without loss of generality, we can assume that νi = ei; now, if φ ∈ C1
c (R

n), the function

φt(x) =
φ(x+ tei)− φ(x)

t

is uniformly convergent to ∂iφ(x). This implies that∫
Rn

χE(x)∂iφ(x)dx = lim
t→0+

∫
Rn

χE(x)φt(x)dx.

But ∫
Rn

χE(x)φt(x)dx =
∫
Rn

χE(x− tei)− χE(x)
t

φ(x)dx,

hence ∣∣∣∣∫
Rn

χE(x)φt(x)dx
∣∣∣∣ ≤ ‖φ‖∞

|E4(E + tei)|
t

.

From this it follows that∣∣∣∣∫
Rn

χE(x)∂iφ(x)dx
∣∣∣∣ ≤ ‖φ‖∞ lim inf

t→0+

|E4(E + tei)|
t

= ‖φ‖∞|DiχE | ≤M‖φ‖∞.

In the end, we have proved that∫
Rn

χE(x)div φ(x)dx ≤ nM‖φ‖∞, ∀φ ∈ C1
c (R

n),

and then χE ∈ BV (Rn).

In connection with these results, it seems to be interesting to pursue the investigation
of the relationships between the perimeter of a set in a domain and the short-time
behavior of the semigroup T (t) generated by a more general operator like (A1, D(A1)).

Remark 5.1.7. In what follows Gaussian upper and lower bounds of the fundamental
solution associated with the operator ∂t − A are of relevant importance. They can be
found in Appendix B and are used in a form neglecting eωt. This is not important for
our computations since we are interested in the behavior of T (t) for small t, see Remark
B.2.1.
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5.2 Preliminary results for problems in a domain

For every s > 0 and x0 ∈ Ω, we set

Ωs,x0 =
Ω− x0√

s
=
{
y ∈ Rn : x0 +

√
sy ∈ Ω

}
and, given f : Ω → R, fs,x0(y) = f(x0 +

√
sy). With this notation, we define the

operator As,x0 on Ωs,x0 by

As,x0(y)v(y) = div(As,x0(y)Dv(y)) +
√
s〈Bs,x0(y), Dv(y)〉+ scs,x0(y)v(y)

=
n∑

h,k=1

ahk(x0 +
√
sy)

∂2v

∂yh∂yk
(y) +

√
s

n∑
k=1

(
n∑
h=1

Dhahk(x0 +
√
sy)

)
∂v

∂yk
(y)

+
√
s

n∑
h=1

bh(x0 +
√
sy)

∂v

∂yh
(y) + sc(x0 +

√
sy)v(y),

and the operator Ax on Rn by

Axv(y) =
n∑

h,k=1

ahk(x)
∂2v

∂yh∂yk
(y).

By setting x = x0 +
√
sy, it is easily seen that As,x0(y) = sA(x). We have the following

lemma.

Lemma 5.2.1. Setting u(t, x) = T (t)u0(x), we can define the function v : (0,+∞) ×
Ωs,x0 → R by v(t, y) = u(ts, x0 +

√
sy); then v is the solution of the problem

∂tw = As,x0(y)w in (0,+∞)× Ωs,x0

w(0, y) = us,x0
0 (y) in Ωs,x0

〈As,x0Dw, ν〉 = 0 in (0,+∞)× ∂Ωs,x0 .

(5.16)

Proof. By definition, we have v(0, y) = u(0, x0 +
√
sy) = u0(x0 +

√
sy) = us,x0

0 (y).
Moreover, if we set x = x0 +

√
sy, we have that ∂/∂yh =

√
s∂/∂xh and also that the

unit outward normal to ∂Ωs,x0 at y coincides with the unit outward normal to ∂Ω at x;
therefore,

〈As,x0(y)Dyv(t, y), ν(y)〉 =
√
s〈A(x)Dxu(ts, x), ν(x)〉 = 0.

In the same way, we have

∂tv(t, y) = su′(ts, x0 +
√
sy) = su′(ts, x) = sA(x)u(ts, x) = As,x0(y)v(t, y),

where u′ denotes the derivative of u with respect to its first variable, and this concludes
the proof. In order
to follow the computations in Section 5.1, based on the Gauss-Weierstrass kernel G we
recall that the semigroup generated by A, As,x, Ax, are represented through an integral
kernel that will be introduced with a coherent notation (see e.g. [45]). We also denote
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by (T s,x0(t))t≥0 the semigroup associated with problem (5.16) and by ps,x0(t, y, z) its
kernel. We also denote by (T x0(t))t≥0 the semigroup associated with the problem{

∂tw(t, y) = Ax0(y)w(t, y) in (0,+∞)×Rn

w(0, y) = w0(y) in Rn

and by px0(t, y, z) its kernel.

Lemma 5.2.2. For the kernels the following holds

p(t, x, y) = s−n/2ps,x0

( t
s
,
x− x0√

s
,
y − x0√

s

)
. (5.17)

Proof. The proof of Lemma 5.2.1 gives that v(t, y) = T s,x0(t)us,x0
0 (y) = T (ts)u0(x0+√

sy); using the kernels, we get that∫
Ω

p(t, x, y)u0(y)dy = T (t)u0(x) = T s,x0

(
t

s

)
us,x0

0

(
x− x0√

s

)
=
∫

Ωs,x0

ps,x0

(
t

s
,
x− x0√

s
, z

)
u0(x0 +

√
sz)dz

= s−n/2
∫

Ω

ps,x0

(
t

s
,
x− x0√

s
,
y − x0√

s

)
u0(y)dy.

The arbitrarity of u0 gives the thesis.

We have the following result.

Proposition 5.2.3. For every f ∈ L1(Rn), let us,x(t, ξ) be the solution of the problem
∂tw(t, ξ) = As,x(ξ)w(t, ξ) in (0,+∞)× Ωs,x

〈A(x+
√
sξ)Dw(t, ξ), νΩs,x(ξ)〉 = 0 in (0,+∞)× ∂Ωs,x

w(0, ξ) = f(ξ) in Ωs,x

and let ux(t, ξ) be the solution of the problem{
∂tw(t, ξ) = Ax(ξ)w(t, ξ) in (0,+∞)×Rn

w(0, ξ) = f(ξ) in Rn .

Then for every t > 0 we have that us,x(t, ·) converges to ux(t, ·) in L1
loc(R

n) as s→ 0.

Proof. We start by taking f ∈ Cc(Rn) and denoting by us,x(t, ξ) the solution of the
problem 

∂tw(t, ξ) = Ax(ξ)w(t, ξ) in (0,+∞)× Ωs,x

〈As,x(ξ)Dξw(t, ξ), ν(ξ)〉 = 0 in (0,+∞)× ∂Ωs,x

w(0, ξ) = f(ξ) in Ωs,x.
(5.18)

Since us,x is a classical solution, for every regular function ϕ : [0, t0] × Rn → R with
ϕ(t0, ·) = 0, the following holds:

−
∫

Ωs,x

f(ξ)ϕ(0, ξ)dξ =
∫ t0

0

∫
Ωs,x

{
us,x(t, ξ) (∂tϕ(t, ξ) + scs,x(ξ)) (5.19)

+
∂us,x(t, ξ)

∂ξk

[
−as,xhk (ξ)

∂ϕ(t, ξ)
∂ξh

+
√
sϕ(t, ξ)bs,xk (ξ)

]}
dξdt.
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Moreover, notice that scs,x → 0, as,xhk → ahk(x),
√
sbs,xk → 0 uniformly on compact sets

as s→ 0.

As an auxiliary tool, let us use the L2 theory, see e.g. [45, Section 5.4], recalling that
there is M > 0 independent of s ∈ [0, 1], such that

‖us,x(t)‖L2(Ωs,x) ≤M‖f‖L2(Ωs,x) ≤M‖f‖L2(Rn), (5.20)

‖Dus,x(t)‖L2(Ωs,x) ≤
M√
t
‖f‖L2(Ωs,x) ≤

M√
t
‖f‖L2(Rn), (5.21)

and
‖D2us,x(t)‖L2(Ωs,x) ≤

M

t
‖f‖L2(Ωs,x) ≤

M

t
‖f‖L2(Rn). (5.22)

These conditions imply that for every bounded open set A ⊂ Rn, t > 0 fixed and
s0 small enough, the family (us,x(t, ·))0<s<s0 is bounded in W 2,2(A), and then, up to
subsequences, it is strongly convergent in W 1,2(A) and also in W 1,1(A).

We can now fix a countable dense setD ⊂ [0, t0] in such a way that ush,x(t, ·) converges
to some g(t, ·) in W 1,1(A) for every t ∈ D and some sequence sh → 0. By (3.2) we get
that

‖us,x(t2, ·)− us,x(t1, ·)‖L1(Ωs,x) =
∥∥∥∫ t2

t1

∂tu
s,x(t, ·)dt

∥∥∥
L1(Ωs,x)

≤
∫ t2

t1

‖As,xus,x(t, ·)‖L1(Ωs,x)dt ≤ c1‖f‖L1(Ωs,x)

∫ t2

t1

1
t
dt ≤ c1‖f‖L1(Rn) log

t2
t1
,

that is, the function t 7→ us,x(t, ·) is continuous from (0, t0) to L1(Ωs,x); in particular, if
we consider t1, t2 ∈ D, then the inequality

‖g(t2, ·)−g(t1, ·)‖L1(A) ≤ ‖g(t2, ·)− ush,x(t2, ·)‖L1(A)

+ ‖ush,x(t2, ·)− ush,x(t1, ·)‖L1(A) + ‖ush,x(t1, ·)− g(t1, ·)‖L1(A)

holds and the convergence of us,x on D shows that we can extend g to a continuous map
from (0, t0) to L1

loc(R
n); we also notice that by (3.4) we deduce also that g(t, ·) ∈W 1,1(A)

for every t ∈ (0, t0). By continuity, and by the convergence of ush,x(t, ·) on D we deduce
that ush,x(t, ·) → g(t, ·) in L1

loc(R
n) for every t ∈ (0, t0). In addition, conditions (3.1)

allow us to apply the dominated convergence theorem, and then, taking the limit in
(5.19), we get

−
∫
A

f(ξ)ϕ(0, ξ)dξ =
∫ t0

0

∫
A

(
g(t, ξ)∂tϕ(t, ξ)− 〈A(x)Dξϕ(t, ξ), Dξg(t, ξ)〉

)
dξdt

for all ϕ as above, and then (see e.g. [40, Prop. 2.1, Ch. III]) g(t, ·) is the solution of the
problem {

∂tw(t, ξ) = ahk(x) ∂2w
∂ξh∂ξk (t, ξ) in (0, t0)×Rn

w(0, ξ) = f(ξ) in Rn

for every f ∈ Cc(Rn). Then, it follows that

g(t, ξ) = ux(t, ξ) =
∫
Rn

px(t, ξ, z)f(z)dz,
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where using the Fourier transform the kernel px is given by

px(t, ξ, z) =
1

(4πt)n/2|detA1/2(x)|
exp

(
−
〈
A−1(x)(ξ − z), (ξ − z)

〉
4t

)
. (5.23)

By the density of Cc in L1 we conclude.

The following statement is an immediate consequence of Proposition 5.2.3.

Corollary 5.2.4. For every t > 0 and a.e. ξ ∈ Rn, the family of measures dµs,x =
ps,x(t, ξ, ·)dLn Ωs,x is weakly∗ convergent to the measure dµx = px(t, ξ, ·)dLn as s→ 0,
that is, for every ϕ ∈ Cc(Rn) the following equality holds

lim
s→0

∫
Ωs,x

ϕ(z)ps,x(t, ξ, z)dz =
∫
Rn

ϕ(z)px(t, ξ, z)dz.

Henceforth, given the function p(t, ξ, z), we shall denote by D1p(t, ξ, z) the gradient
with respect to the first spatial variables ξ and by D2p(t, ξ, z) the gradient with respect
to the second spatial variables z.

Proposition 5.2.5. For every t > 0 and a.e. ξ ∈ Rn, the equality

lim
s→0

∫
Ωs,x

〈D2p
s,x(t, ξ, z), ϕ(z)〉dz =

∫
Rn

〈D2p
x(t, ξ, z), ϕ(z)〉dz (5.24)

holds for every ϕ ∈ L∞(Rn,Rn).

Proof. We start by considering ϕ ∈ C1
c (R

n,Rn); we choose s0 > 0 in such a way
that suppϕ ⊂ Ωs,x for all s ≤ s0; then∫

Ωs,x

〈D2p
s,x(t, ξ, z), ϕ(z)〉dz = −

∫
Ωs,x

ps,x(t, ξ, z)divϕ(z)dz

and then, by Corollary 5.2.4

lim
s→0

∫
Ωs,x

〈D2p
s,x(, ξ, z), ϕ(z)〉dz = lim

s→0
−
∫

Ωs,x

ps,x(t, ξ, z)divϕ(z)dz

= −
∫
Rn

px(t, ξ, z)divϕ(z)dz =
∫
Rn

〈D2p
x(t, ξ, z), ϕ(z)〉dz.

For an arbitrary ϕ ∈ L∞(Rn,Rn) we use an approximation procedure.
First of all recall that for every ε > 0 we can find R > 0 and s0 > 0 such that∫

Ωs,x\BR(0)

|D2p
s,x(t, ξ, z)| dz ≤ ε,

∫
Rn\BR(0)

|D2p
x(t, ξ, z)| dz ≤ ε.

for all s ≤ s0. Now, let η ∈ C∞c (Rn), 0 ≤ η ≤ 1, η = 1 in BR(0) and η = 0 in Rn\B2R(0),
and select ε < R/2. Then ϕε = ρε ∗ (ηϕ) ∈ C1

c (R
n,Rn) such that ‖ϕ−ϕε‖Lp(BR(0)) ≤ ε

for all 1 ≤ p <∞ and then∫
Ωs,x

〈D2p
s,x(t, ξ, z), ϕ(z)〉dz =

∫
Ωs,x

〈D2p
s,x(t, ξ, z), ϕε(z)〉dz

+
∫

Ωs,x∩BR(0)

〈D2p
s,x(t, ξ, z), (ϕ(z)− ϕε(z))〉dz

+
∫

Ωs,x\BR(0)

〈D2p
s,x(t, ξ, z), (ϕ(z)− ϕε(z))〉dz.
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Taking into account that ps,x(t, ξ, z) = sn/2p(ts, x+
√
sξ, x+

√
sz) and also that

D2p
s,x(t, ξ, z) = Dzs

n/2p(ts, x+
√
sξ, x+

√
sz)

= s(n+1)/2D2p(ts, x+
√
sξ, x+

√
sz),

by (B.2) we obtain∣∣∣ ∫
Ωs,x∩BR(0)

〈D2p
s,x(t, ξ, z), (ϕ(z)− ϕε(z))〉dz

∣∣∣
≤ s(n+1)/2‖ϕ− ϕε‖L2(BR)

(∫
Ωs,x

|D2p(ts, x+
√
sξ, x+

√
sz)|2dz

)1/2

≤ Cε

with C independent of s. Of course, the inequality∣∣∣ ∫
BR(0)

〈D2p
x(t, ξ, z), (ϕ(z)− ϕε(z))〉dz

∣∣∣ ≤ Cε

holds as well, and then

lim
s→0

∣∣∣ ∫
Ωs,x

〈D2p
s,x(t, ξ, z), ϕ(z)〉dz −

∫
Rn

〈D2p
x(t, ξ, z), ϕ(z)〉dz

∣∣∣
≤ lim
s→0

∣∣∣ ∫
Ωs,x∩BR(0)

〈D2p
s,x(t, ξ, z), (ϕ(z)− ϕε(z))〉dz

∣∣∣
+ lim
s→0

∣∣∣ ∫
Ωs,x\BR(0)

〈D2p
s,x(t, ξ, z), (ϕ(z)− ϕε(z))〉dz

∣∣∣
+ lim
s→0

∣∣∣ ∫
Ωs,x

〈D2p
s,x(t, ξ, z), ϕε(z)〉dz −

∫
Rn

〈D2p
x(t, ξ, z), ϕε(z)dz〉

∣∣∣
+ lim
s→0

∣∣∣ ∫
BR(0)

〈D2p
x(t, ξ, z), (ϕ(z)− ϕε(z))〉dz

∣∣∣
+ lim
s→0

∣∣∣ ∫
Rn\BR(0)

〈D2p
x(t, ξ, z), (ϕ(z)− ϕε(z))〉dz

∣∣∣ ≤ Cε

and the thesis follows from the arbitrariness of ε.

5.3 A second characterization of BV functions

The main step in the proof of (5.4) is the following result, where an asymptotic
formula relating two sets of finite perimeter is shown. In the statement, we assume that
E has finite measure in order to give a meaning to the left hand side in (5.27) below.
But, notice that, since E has finite perimeter in Ω, then by the relative isoperimetric
inequality in the regular set Ω

min{|E ∩ Ω|, |Ω \ E|} ≤ kP(E,Ω)n/n−1,

either |E ∩ Ω| or |Ω \ E| is finite. Therefore, if |E ∩ Ω| is infinite, then |Ω \ E| is finite
and (5.27) applies with Ω \ E in place of E.
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Proposition 5.3.1. Assume that Ω be as in (2.2). Let B be as in (2.5), and consider
A0 = div(AD), with A = (aij)ij satisfying (2.107)–(2.108); let (T0(t))t≥0 be the semi-
group generated by the realization of A0 in L1(Ω) with homogeneous boundary condition
Bu = 0; then, if E,F ⊂ Rn are sets of finite perimeter in Ω, the following holds

lim
t→0

√
π

t

∫
Ω∩F

(χE(x)− T0(t)χE(x))dx =
∫

Ω∩FF∩FE

〈A(x)νE(x), νF (x)〉dHn−1(x).

Proof. We have∫
Ω∩F

(T0(t)χE(x)− χE(x))dx =
∫

Ω∩F

∫ t

0

d

ds
T0(s)χE(x)dsdx

=
∫ t

0

∫
Ω∩F

A0T0(s)χE(x)dxds

=
∫ t

0

∫
Ω∩F

divx(A(x)DxT0(s)χE(x))dxds

We introduce now the kernel p0,∗(t, x, y) of the semigroup generated by the adjoint op-
erator A∗0 of A0; by the symmetry of the matrix A, the operator A∗0 = A0. In this way
we have that p0(t, x, y) = p0,∗(t, y, x) (see for instance [45, Theorem 5.6]) and since

Dxip0(t, x, y) = lim
h→0

p0(t, x+ hei, y)− p0(t, x, y)
h

= lim
h→0

p0,∗(t, y, x+ hei)− p0,∗(t, y, x)
h

= s−n/2 lim
h→0

ps,x0
0,∗ ( ts ,

y−x0√
s
, x−x0√

s
+ hei√

s
)− ps,x0

0,∗ ( ts ,
y−x0√

s
, x−x0√

s
)

h

= s−(n+1)/2Di
2p
s,x0
0,∗

( t
s
,
y − x0√

s
,
x− x0√

s

)
whereDi

2 denotes the i-th component of the gradient with respect to the second variables.
Then for t = s and x = x0, Dxp0(t, x, y) = t−(n+1)/2D2p

t,x
0,∗(1,

y−x√
t
, 0); hence integrating

by parts we get∫
Ω∩F

div(ADxT0(s)χE(x))dx =
∫

Ω∩FF
〈DxT0(s)χE(x), A(x)νF (x)〉dHn−1(x)

=
∫

Ω∩FF

∫
Ω∩E

〈Dxp0(s, x, y), A(x)νF (x)〉 dy dHn−1(x)

=
∫

Ω∩FF

∫
Ω∩E

s−(n+1)/2

〈
D2p

s,x
0,∗

(
1,
y − x√

s
, 0
)
, A(x)νF (x)

〉
dydHn−1(x)

= − 1√
s

∫
Ω∩FF

∫
Ωs,x∩Es,x

〈
D2p

s,x
0,∗(1, z, 0), A(x)νF (x)

〉
dzdHn−1(x)

= − 1√
s

∫
Ω∩FF

∫
Rn

〈
D2p

s,x
0,∗(1, z, 0), A(x)νF (x)

〉
dµs,x(z)dHn−1(x), (5.25)

where we have denoted by µs,x the measure

µs,x = Ln (Ωs,x ∩ Es,x) . (5.26)

These measures verify the following properties:
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1. µs,x
w∗loc−→ 0 if x ∈ E0:

2. µs,x
w∗loc−→ Ln if x ∈ E1;

3. µs,x
w∗loc−→ Ln HνE(x) for x ∈ FE, where HνE(x) = {z ∈ Rn : 〈z, νE(x)〉 ≤ 0}.

These facts imply that, for x ∈ E0,
∫
Rn

〈
D2p

s,x
0,∗(1, z, 0), A(x)νF (x)

〉
dµs,x(z) → 0; indeed

∣∣∣ ∫
Rn

〈D2p
s,x
0,∗(1, z, 0),A(x)νF (x)〉 dµs,x(z)

∣∣∣
= s(n+1)/2

∣∣∣ ∫
Rn

〈Dxp0(s, x, z
√
s+ x), A(x)νF (x)〉 dµs,x(z)

∣∣∣
≤ c1‖A‖∞

∫
Rn

e−b|z|
2
dµs,x(z).

Now, let ε > 0 be given, we consider η ∈ C∞c (Rn) such that
∫
Rn

(1−η) e−b|z|
2
dµs,x(z) ≤

ε, then there exists s0 > 0 such that if |s| < s0∫
Rn

e−b|z|
2
dµs,x(z) =

∫
Rn

η e−b|z|
2
dµs,x(z) +

∫
Rn

(1− η) e−b|z|
2
dµs,x(z) < ε.

Moreover, for x ∈ E1∫
Ωs,x

χEs,x(z)
〈
D2p

s,x
0,∗(1, z, 0), A(x)νF (x)

〉
dz =

∫
Ωs,x

〈
D2p

s,x
0,∗(1, z, 0), A(x)νF (x)

〉
dz

+
∫

Ωs,x\Es,x

〈
D2p

s,x
0,∗(1, z, 0), A(x)νF (x)

〉
dz

Now, ∫
Ωs,x

〈
D2p

s,x
0,∗(1, z, 0), A(x)νF (x)

〉
dz → A(x)νF (x) ·

∫
Rn

D2p
x
0,∗(1, z, 0)dz = 0

and for every ε > 0 there exists t0 small enough, such that for |s| < t0, by (B.2)∫
Ωs,x\Es,x

|D2p
s,x
0,∗(1, z, 0)| dz < ε

therefore if x ∈ E1 and s is sufficiently small,

1√
t

∫ t

0

1√
s

∫
Ωs,x∩Es,x

〈
D2p

s,x
0,∗(1, z, 0), A(x)νF (x)

〉
dz < 2ε.

Now, taking into account that Hn−1(∂∗E \ FE) = 0, we can consider only points x ∈
FF ∩ FE; in this case we obtain that∫

Rn

〈
D2p

s,x
0,∗(1, z, 0), A(x)νF (x)

〉
dµs,x(z) −→

∫
HνE(x)

〈
D2p

x
0,∗(1, z, 0), A(x)νF (x)

〉
dz.
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Taking into account (5.23) and the symmetry of A, we get that

D2p
x
0,∗(1, z, 0) = − 1

2(4π)n/2|detA1/2(x)|
exp

(
−
〈
A−1(x)z, z

〉
/4
)
A−1(x)z,

and then, since for x ∈ FF ∩ FE we have νF (x) = 〈νE(x), νF (x)〉νE(x)∫
HνE(x)

〈
D2p

x
0,∗(1, z, 0), A(x)νF (x)

〉
dz =

= − 〈νE(x), νF (x)〉
2(4π)n/2|detA1/2(x)|

∫
HνE(x)

exp
(
−
〈
A−1(x)z, z

〉
/4
)
〈z, νE(x)〉dz

= −〈νE(x), νF (x)〉
πn/2

∫
H

A1/2(x)νE(x)

e−|z|
2
〈
z,A1/2(x)νE(x)

〉
dz.

For the computation of this last integral, we consider an orthonormal basis {e1, . . . , en}
of Rn with

en =
A1/2(x)νE(x)
|A1/2(x)νE(x)|

;

we then obtain∫
H

A1/2(x)νE(x)

〈
z,A1/2(x)νE(x)

〉
e−|z|

2
dz = |A1/2(x)νE(x)|

∫
H

A1/2(x)νE(x)

zne
−|z|2dz

= π(n−1)/2|A1/2(x)νE(x)|
∫ 0

−∞
zne

−z2ndzn = −π
(n−1)/2

2
|A1/2(x)νE(x)|.

At the end, we have obtained that

lim
t→0

√
π

t

∫
Ω∩F

(T0(t)χE − χE)dx = −
∫

Ω∩FF∩FE
〈νE , νF 〉|A1/2νE |dHn−1.

With a perturbation argument we establish the result stated in Proposition 5.3.1 for
the semigroup T (t) generated by the complete operator (A1, D(A1)) in L1(Ω).

Theorem 5.3.2. Assume Ω, B be as in Proposition 5.3.1 and let A be as in (5.1) with
coefficients satisfying (5.2). Denote by T (t) the semigroup generated by (A1, D(A1)) in
L1(Ω), then, if E,F ⊂ Rn are sets of finite perimeter in Ω, the following holds

lim
t→0

√
π

t

∫
Ω∩F

(χE(x)− T (t)χE(x))dx =
∫

Ω∩FF∩FE

〈A(x)νE(x), νF (x)〉dHn−1(x). (5.27)

Proof. By using Proposition 5.3.1 and the notations fixed there, it suffices to prove
that

lim
t→0

1√
t

∫
Ω∩F

(T0(t)χE(x)− T (t)χE(x))dx = 0. (5.28)

In order to get the claim, we set u(t, x) = (T (t)χE)(x) and v(t, x) = (T0(t)χE)(x), so
that the function z = u− v solves the problem

∂tz −Az = 〈B,Dv〉+ cv t > 0, x ∈ Ω
z(0) = 0 x ∈ Ω
〈ADz, ν〉 = 0 t > 0, x ∈ ∂Ω
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and can be written as follows

u− v =
∫ t

0

T (t− s)
(
〈B,Dv(s)〉+ cv(s)

)
ds. (5.29)

Using (3.1) we have

‖u− v‖L1(Ω) ≤ c0

∫ t

0

(
‖〈B,Dv(s)〉‖L1(Ω) + ‖cv(s)‖L1(Ω)

)
ds. (5.30)

If we prove that
‖u− v‖L1(Ω) = o(

√
t) as t→ 0 (5.31)

we conclude. For the last term in (5.30) we have that∫
Ω

|c(x)T0(s)χE(x)| dx ≤ c0‖c‖∞|Ω ∩ E|

and then

lim
t→0

1√
t

∫ t

0

∫
Ω

|c(x)T0(s)χE(x)| dxds = 0.

For the first term in (5.30), we notice that∣∣∣∣∫
Ω

∫
Ω∩E

〈B(x), Dxp0(s, x, y)〉dydx
∣∣∣∣ ≤ ‖B‖∞|Ω ∩ E|

∫
Ω

|Dxp0(s, x, y)|dx

and using Gaussian estimates (B.2) we get∫
Ω

|Dxp0(s, x, y)|dx ≤
C√
s

for some constant C depending only on the operator A and the dimension n. However
we can write∫

Ω

〈B,DxT0(s)χE〉dx =
∫

Ω

dx

∫
Ω∩E

〈B(x), Dxp0(s, x, y)〉dy

= s−(n+1)/2

∫
Ω

dx

∫
Ω∩E

〈
B(x), D2p

s,x
0,∗

(
1,
y − x√

s
, 0
)〉

dy

=
1√
s

∫
Ω

dx

∫
Ωs,x∩Es,x

〈
B(x), D2p

s,x
0,∗(1, z, 0)

〉
dz

=
1√
s

∫
Ω

dx

∫
Rn

〈
B(x), D2p

s,x
0,∗(1, z, 0)

〉
dµs,x(z).

where µs,x is defined in (5.26) and satisfies 1., 2. and 3. of Proposition 5.3.1. With the
same argument previously used, we can deduce that for x ∈ E0 ∪ E1, the limit of the
above integral as t→ 0 vanishes; then, taking into account that |Ω \ (E0 ∪ E1)| = 0, we
have then obtained that

lim
t→0

1√
t

∫ t

0

∫
Ω

∫
Ω∩E

|〈B(x), Dxp0(s, x, y)〉| dydxds = 0

for Hn−1-a.a. x ∈ E0 ∪ E1. Therefore (5.31) is proved and the proof is complete

Specializing the above result for F = Ec we get the following
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Corollary 5.3.3. Under assumption of Theorem 5.3.1, let (T (t))t≥0 be the semigroup
generated by (A1, D(A1)) in L1(Ω); then, if E ⊂ Rn is a set with finite perimeter in Ω,
the following equality holds:

lim
t→0

√
π

t

∫
Ω∩Ec

T (t)χEdx =
∫

Ω∩FE
|A1/2(x)νE(x)|dHn−1(x). (5.32)

Using an argument similar to the one used in [33, Theorem 3.4] and the lower bound
for the kernel p(t, x, y), it is possible to prove the converse of the statement in Corollary
5.3.3.

Proposition 5.3.4. Let E ⊂ Rn be a set such that either E or Ec has finite measure
in Ω, and such that

lim inf
t→0

1√
t

∫
Ec∩Ω

T (t)χE(x)dx < +∞,

then E has finite perimeter in Ω, that is χE ∈ BV (Ω).

Proof. Define EΩ := E ∩ Ω and assume |EΩ| <∞. From (B.17) we have

1√
t

∫
Ec

T (t)χE(x) dx =
∫

Ω

∫
Ω

p(t, x, y)χE(y)χEc(x) dy dx

≥ C1

t(n+1)/2

∫
Rn

∫
Rn

e−c1
|x−y|2

t χEΩ(y)
(
χΩ(x)− χE(x)

)
dy dx

=
C1√
t

∫
Rn

e−c1|z|
2
∫
Rn

χΩ(x)χEΩ(z
√
t+ x)(1− χE(x)

)
dx dz

=
C1√
t

∫
Rn

e−c1|z|
2
∫
Rn

χΩ(x)
(
χEΩ−z

√
t(x)− χEΩ−z

√
t(x)χE(x)

)
dx dz

= C1

∫
Rn

e−c1|z|
2
|z| |(EΩ∆(EΩ − z

√
t)) ∩ Ω|√

t|z|
dz

In fact, denoting by

|DνχE |(Ω) = lim inf
t→0

|(E∆(E − tν)) ∩ Ω|
t

,

by assumption we get that∫
Rn

|z|e−c1|z|
2
|D z

|z|
χEΩ |(Ω) dz

≤ lim inf
t→0

1√
t

∫
Ω×Ω

χE(y)χEc(x)p(t, x, y)dxdy < +∞.

This implies, using an argument similar to that used in Theorem 5.1.6, that there exist
M > 0 such that |Dei

χEΩ |(Ω) ≤M for i = 1, . . . , n. Finally, let ϕ ∈ C1
c (Ω,R

n); then∫
Ω

χE(x)Diϕ(x) dx = lim
t→0+

∫
Ω

χE(x)
ϕ(x+ tei)− ϕ(x)

t
dx
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But ∣∣∣ ∫
Ω

χE(x)
ϕ(x+ tei)− ϕ(x)

t

∣∣∣ = ∣∣∣ ∫
Ω

χEΩ+tei
(x)− χEΩ(x)
t

ϕ(x) dx
∣∣∣

≤ ‖ϕ‖L∞(Ω)
|(EΩ∆(EΩ + tei)) ∩ Ω|

t

Thus ∣∣∣ ∫
Ω

χE(x)Diϕ(x) dx
∣∣∣ ≤ ‖ϕ‖L∞(Ω) lim inf

t→0+

|(EΩ∆(EΩ + tei)) ∩ Ω|
t

= ‖ϕ‖L∞(Ω)|DeiχEΩ |(Ω) ≤M‖ϕ‖L∞(Ω)

and ∫
Ω

χE(x)divϕ(x) dx ≤ nM‖ϕ‖L∞(Ω)

that is |DχE |(Ω) < +∞.

We are now in a position to prove the main result of this section, namely, the an-
nounced characterization of BV functions (5.4). The strategy is the same as for Rn and
is based on (4.13).

Theorem 5.3.5. Let Ω, A, B be as in Theorem 5.3.2, let (T (t))t≥0 be the semigroup
generated by (A1, D(A1)) in L1(Ω) and let u ∈ L1(Ω); then u ∈ BV (Ω) if and only if

lim inf
t→0

1√
t

∫
Ω×Ω

|u(x)− u(y)|p(t, x, y)dxdy < +∞;

moreover, in this case the following equality holds

|Du|A(Ω) = lim
t→0

√
π

2
√
t

∫
Ω×Ω

|u(x)− u(y)|p(t, x, y)dxdy. (5.33)

Proof. The “if” part. We start by considering u ∈ L1(Ω); for τ ∈ R we denote by
Eτ = {u > τ} and, since the semigroup is positive and contractive, we obtain that

0 ≤
∫
R

lim inf
t→0

1√
t

∫
Ec

τ∩Ω

T (t)χEτ dxdτ ≤ lim inf
t→0

1√
t

∫
R

∫
Ec

τ∩Ω

T (t)χEτ dxdτ

≤ lim inf
t→0

1√
t

∫
Ω×Ω

∫
R

|χEτ (x)− χEτ (y)|p(t, x, y)dxdydτ

= lim inf
t→0

1√
t

∫
Ω×Ω

|u(x)− u(y)|p(t, x, y)dxdy < +∞

and then, thanks to Proposition 5.3.4, almost every level Eτ has finite perimeter and
equation (5.32) holds. Then, using coarea formula (4.13), we get

|Du|A(Ω) =
∫
R

PA(Eτ ,Ω)dτ =
∫
R

lim
t→0

√
π

t

∫
Ec

τ∩Ω

T (t)χEτ dxdτ

≤ lim inf
t→0

√
π

t

∫
Ω×Ω

|u(x)− u(y)|p(t, x, y)dxdy < +∞
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that is u ∈ BVA(Ω).
The other implication follows from (5.33). To prove (5.33), we define the function

gt(τ) =
√
π

t

∫
Ec

τ∩Ω

T (t)χEτ
(x)dx.

For this function we have the following estimate

|gt(τ)| =
√
π

t

∣∣∣ ∫ t

0

∫
Ec

τ∩Ω

AT (s)χEτ dxds
∣∣∣ =√π

t

∣∣∣ ∫ t

0

(∫
FEτ∩Ω

〈ADT (s)χEτ , νEτ 〉dHn−1

+
∫
Ec

τ∩Ω

〈B,DT (s)χEτ
〉dx+

∫
Ec

τ∩Ω

cT (s)χEτ
)dx
)
ds
∣∣∣

≤
√
π

t

∫ t

0

(
‖A‖∞

∫
FEτ

|DT (s)χEτ
|dHn−1

+ ‖B‖∞
∫

Ec
τ∩Ω

∫
Eτ∩Ω

|Dxp(s, x, y)|dxdy + ‖c‖∞
∫

Ec
τ∩Ω

∫
Eτ∩Ω

|p(s, x, y)|dxdy
)
ds

≤cM0(P(Eτ ,Ω) + min{|Eτ ∩ Ω|, |Ecτ ∩ Ω|}) = h(τ)

where the last inequality follows from the estimates (B.2) on the kernel p(s, x, y). We
have that h ∈ L1(R) since ∫

R

P(Eτ ,Ω)dτ = |Du|(Ω)

and, denoted by u+ = max{u, 0} and u− = max{−u, 0},∫
R

min{|Eτ ∩ Ω|, |Ecτ ∩ Ω|}dτ ≤
∫ ∞

0

|Eτ ∩ Ω|dτ +
∫ 0

−∞
|Ecτ ∩ Ω|dτ

=
∫ ∞

0

∫
Ω

χEτ
dxdτ +

∫ 0

−∞

∫
Ω

χEc
τ
dxdτ

=
∫

Ω

∫ ∞

0

χ{u>τ}dτdx+
∫

Ω

∫ ∞

0

χ{−u≥τ}dτdx

=
∫

Ω

u+dx+
∫

Ω

u−dx =
∫

Ω

|u|dx.

Then we can apply Corollary 5.3.3 and Lebesgue dominated convergence theorem to the
functions gt in order to obtain

|Du|A(Ω) =
∫
R

PA(Eτ ,Ω)dτ =
∫
R

lim
t→0

√
π

t

∫
Ec

τ∩Ω

T (t)χEτ
dx

= lim
t→0

√
π

t

∫
R

∫
Ω×Ω

(χEτ
(y)− χEτ

(y)χEτ
(x))p(t, x, y)dxdydτ

= lim
t→0

√
π

t

∫
Ω×Ω

(u(y)−min{u(y), u(x)})p(t, x, y)dxdy

since χEτ (y)χEτ (x) 6= 0 if and only if τ < min{u(x), u(y)}; finally, the assertion follows
by noticing that min{u(y), u(x)} = 1

2 (u(x) + u(y)− |u(x)− u(y)|).




