Chapter 3

Estimates of the derivatives of
solution of parabolic problems

in L1(Q)

As a consequence of Theorem 2.5.2 and Proposition 1.2.7 we have that (A, D(A;1))
is sectorial in L!(), then it generates a bounded analytic semigroup 7'(¢) and T'(t)uq is
the solution of

dw—Aw =0 1in (0,00) x
w(0) = ug in Q
(ADw,v) =0 in (0,00) x OS2

for each ug € L*(£2). Moreover there exist ¢; = ¢;(Q, u, M), i = 0, 1 such that
1T 2y <co, >0 (3.1)

and
tHAlT(t)”ﬁ(Ll(Q)) <c, t>0. (32)

Moreover since D(A;) is dense in L!(Q) by construction, T(¢) is strongly continuous in
L'(€). Hence
11%1+ IT(t)uo — uo|| 1y = 0 for all up € L*(2) (3.3)
t—

Notice that for every v € L'(Q) and for every ¢t > 0, T'(t)u € W21(Q).

3.0.1 Estimates of first order derivatives

Now, using the gradient estimate (2.115) of the resolvent operator R(\, A1), we esta-
bilish the following further property of the semigroup T'(¢).
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Proposition 3.0.4. Let 2, A and B be as in Section 2.5 and let T(t) be the semigroup
generated by (A1, D(A1)). Then, there exists co depending on Q,pu, My such that for
t>0,

2T () £(nr @) < ca- (3.4)

PROOF. Let 8] be as in Theorem 2.5.3 and suppose w| = 0 (otherwise we consider
Ay — w). Let consider the curve

L ={AeC;larg\| =01, |\ > 1} U{N e C: |arg\| < 07,|\ =1}

oriented counterclockwise. We know that for ¢ > 0
1
T(t) = — [ e®R(\, Ay)dA.
()= 57 [ RO A)

Setting A’ = A\t we get

1

() = o~

/ N RO Jt, At dN
Iy
and

™

1 /
DZT(t) == T / 6)‘ t_lDiR()\//t,Al)d)\/ L= 1, oo
r
therefore by (2.115)
IDTW ey < [ SNWAN et 2 =L
r

and the result is proved. O

Remark 3.0.5. [Neumann boundary conditions] We have stated Theorem 2.5.2 in
the form we most frequently use, but the estimates hold under more general assumptions.
In particular, all non tangential boundary conditions are allowed. We denote by ¢, a
constant which can be used in the inequalities (3.1)—(3.4), when Neumann boundary
conditions are associated with a general uniformly elliptic operator.

Remark 3.0.6. [Assumptions on the coefficients b;] The result of generation in L
and estimates (3.1), (3.2) can be achieved under weaker assumptions on coefficients b;.
Assume A, B as in (2.106), (2.110) with coefficients satisfying (2.108), (2.107). Then we
know that (A, D(A;)) generates an analytic semigroup in L*().

We consider a first order perturbing operator C = 27:1(51 — b;)D; with b; € L>(Q)
bi # b;. Let C; be the realization of C in L'(Q) with domain D(Cy) = W1(Q). The
operator Cy is A;— bounded and more precisely for every ¢ > 0 there exists c¢(e) > 0
such that

[CrullLr (o) < ellArul|rio) + (&) |[ullLr @)

holds for every u € D(A;). Indeed let u € D(A;), (suppose wy = 0, otherwise consider
Ay —wi) then u = R(\, Ay) f for every A € C with Re A > 0 and f € L'(2). Moreover,
by (1.7) we can write

u = / e MT(s)fds, Rel>0.
0
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Thus, in particular for A > 0

||Du||L1 @ < C||f||L1(Q)/ \[ \/—”fHLl(Q (\[HUHLl «) + f||A1u||L1 Q))

This implies that D(A;) < W11(Q); moreover, minimizing over A > 0, we get

1/2 1/2

c
1Dullzr @) < ellullLyig) lArull o) < ellArullzr@) + Zllullzr @ (3.5)
and by Theorem 1.2.10 we conclude. We point out that the first inequality in (3.5) asserts
that Wh1(Q) € Jy,2(L'(22), D(Ay)).

3.1 Estimates of second order derivatives

In order to proceed, we also need a precise L!-estimate of the second (spatial) deriva-
tives of T'(t)uo, for ug € D(Ay). This is proved in Proposition 3.1.3 below. The argument
used here is similar to the one used in [18, Theorem 2.4], where Q is bounded and dif-
ferent boundary conditions are imposed. The scheme is the following: we estimate the
second order derivatives in Proposition 3.1.1, and then, using this result, we characterize
the interpolation space Da(a,1) = (L'(Q), D(A))a,1 as a fractional Sobolev space and
use this to improve estimate (3.6) using the Wh! norm of u instead of the L* norm. We
start with the following result.

Proposition 3.1.1. Let Q, A, B be as in Section 2.5. Assume, in addition, c € W (Q);
then, there exists c3 depending on n, u, Q, My, ||c[lwi=q), co c1, c2, ¢, such that for
every t € (0,1) and u € L*(Q) we have

DT (t)ull (o) < esllullzio)- (3.6)

PrOOF. We set for 0 > 0 u, = T'(0)u and
Mj = max{||Al|2,00, [| B|2,00, ll€ll1,00 }- (3.7)

By the regularity of the boundary 92 we can consider a partition of unity {(n,,Up) then
such that suppn, C Up, > nema(x) = 1 for every z € Q and 0 <, < 1 for every h € N,
Uy C Q, Uy, for h > 1 is a ball such that {Up,},>1 is a covering of 9Q and {Uj, }ren is a
covering of Q with bounded overlapping, that is there is k > 0 such that

> xv.(z) <k, VeeQ (3.8)
heN

Moreover we choose 1, in such a way (A(x)Dny(z),v(z)) = 0 for every z € 9 and set
M := sup,en |71 |2,00, Which is finite by the uniform C? regularity of 92. We can also
consider coordinate functions vy, : Vj, — B(0,1) such that ¢,(V, N Q) = B*(0,1) =
{v = W\ yn) € B(O,1) : yn > 0}, hn (Ve N 0Q) = {y = (v'sya) € B(0,1) : yn = 0},
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d(vp)(a(z)v(x)) = —e, for every x € 9 where d(1 ), denotes the differential of ¢y, at
2. Finally we suppose that there is a constant M, such that

sup {IID*%n 12,00, 1 D05 2,00 } < M.

Notice also that we may assume that for all A > 1 the inclusion U, CC V}, holds, and
that we can choose a C? domain E such that (U, N ) C E C B*(0,1). Notice that
1y € WHH() and denote by u(t) = T(t)u, the solution of the problem

Ow — Aw =0 1in (0,00) x 2
w(0) = u, in Q
(ADw,v) =0 in (0,00) x 0.

We want to estimate the L'-norm of tD?u(t) by the L'-norm of u; we shall use estimates
(3.1)-(3.4). The functions vy, (t) = u(t)n, solve, for every h € N, the problem

Ow — Aw = Apu(t) in (0,00) x Q

w(0) = Npus in (3.9)
(ADw,v) =0 in (0,00) x 90
where
Apu(t) = =2(ADny, Du(t)) — u(t) div(ADng) — u(t) (B, Dnp) . (3.10)

Notice that the derivative Dyuvy,(t) satisfies the equation 0;(Dyvp(t)) — A(Dpop(t)) =
Afu(t), where

Afu(t) =div (DeA)D(u(t)nn)) + ((DrB), D(u(t)nn)) + (Dic)u(t)nn + Di(Apu(t))
u(t)nn)) +

(Die)u(
—div (DR A)D(u(t)m)) + ((DxB), Du(t)n)) + (Dec)u(t)m, (3.11)
+ Di[~2{ADny., Du(t)) — u(t) div(ADny) — u(t) (B, D)

For Dyvy(t) we consider the problem

ow — Aw = Afu(t) in (0,00) x Q
w(0) = Dy(nhus)  inQ (3.12)
(ADw,v) =0 in (0, 00) x 90

whose solution is vpg (t) = T'(t) D, (Npue ) + fot T(t—s)A¥u(s)ds. Now we consider h = 0,

i.e., we draw our attention to the inner part. Since vo(t) = nou(t) = 0 in Q\ Uy, it turns
out that Dyvg(¢) is the solution of (3.12) with A = 0. Then

¢
Dyvo(t) = T(t)Dr(nous) + / T(t — s)Aku(s)ds, (3.13)
0
where AE is the operator defined in (3.11). Then, differentiating, we obtain

%m@z&mMMWM+ADMWﬂMMM®
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by which, using (3.4),

t
IDRvo)llzry < [IDIT () Dy(nous)|l 22 (o) +/ IDIT(t — s) Afu(s)|| L1 (o) ds

< Z|Du(mous) M) + / bu(s)| 1 (o ds

f
< \[|\770|\W1°°||Uo||W11(Q)+ / ﬁ||Aou< o ds

Finally, estimating [Afu(s)|[z1q) by (3.11) we get [[Afu(s)l[rro) < cllu(s)w21(q)
where ¢ = ¢(M, Mz). Summing on [ and k, using (A.1) and again (3.1), we get

1 to
2 <o L1 2
120022 < e Zelluo ooy + | = ID*u()1 o)

where ¢ = ¢(M, My, c3,n). We now consider h > 1, i.e., we consider a ball intersecting
0.

Using the transformation f(y) = f(wgl(y)) for a generic f defined in Q2 N V4, and
since vy, is the solution of (3.9), we get that for every h > 1 the function 95(t,y) =
nn (W5, (y))u(t, 5 *(y)) is the solution of the following initial-boundary value problem
with homogeneous Neumann boundary conditions

oow — Aw = Apd  in (0,4+0) X E

15(0) = Mo in F (3.14)
8—1:/):0 in (0, +00) x OF

where A is the operator defined on B(0,1) as follows
Aw := div(A Dw) 4 (B, Dw) + éw

whose coefficients (here we omit the index h to simplify the notations and by analogy
with (3.9)) are given by

Aly) =(Don) (03 @) - Ay ) - (Dvn) ' (0 ()
(B(y) :=T&[(Dm>(¢;<>> < <y>> " <>> (D0 W)]
+ Te[(Dn) (67 () - G ()] (Do) (0 (9) — ai |an)]

+ [(Dvn) (Wi ) B<w;1<y>>]
éy) =c(yy " (y))
where HL, = D?,(¢p,); and G{ﬂ. = Dya;j(1;, ' (y)) and (see (3.10))

Apii(t) = —2( AWy " (y))(DYy) ! Dijy, (Dipy, ) Dia(t)) — a(t) [ div(ADy) + (A, Dijy)] -

Now, as done before for h = 0, differentiating the equation (now Dy = S%k) we obtain

that Dydy solves 0 (Dytn(t)) — A(Dyon(t)) = Aka(t), where AFo can be obtained by

l
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taking the corresponding term in (3.11). Associated with this operator, we can consider
the problem

dyw — Aw = AFa(t) in (0,00) x E
w(O) = Dk (’ﬁhﬁg) in B

%:0 in (0,00) x OE.

The function D0y, satisfies the equation and the initial condition. Notice that if k # n

also the boundary condition is satisfied since ¥p, = 0 in a neighborhood of dFE N {y €
R" |y, > 0}, in the other part of OF the operator Dy is a tangential derivative and

g% is constant for y,, = 0. Denote by S the semigroup which gives the solution of this

problem and notice that the estimates (3.1)—(3.4) hold for S(¢), see Remark 3.0.5. Then

Dkf)h(t) Dk’l)h / S t— S .A ) (315)

Differentiating (3.15) with respect to D; for any j, we have then proved that the following
holds

Dj ;o (t) = D;S(t) Dy (0 / D;S(t — s)AFa(s)ds (3.16)

Thus, as for vo(t), we have for (k,j) # (n,n)

t
||Dl%j17h(t)||L1(E) < %”Dk(ﬁhﬁa)HLl(E) +/ 7\/;2_78HA§&(5)HL1(E)(15

< il + [ 2 Ao

We now estimate D2, op,(t). Since

n

ann DY 0n(t) = Avn(t) = Y aiDYin(t) — D (Didiy) Dyin(t)

(4,5)#(n,n) ,j=1
— Z l;iDi’f}h (t) - éﬁh(t)
i=1

and since a is uniformly elliptic with ellipticity constant proportional to p, we can find
a constant ¢ (depending only on n, My, 1, 9Q) such that

R 1 /..
HD?m'Uh(t)HLl(E) = Ha(u‘lvh(t) - . .);( )a”D Uh( )—‘r
1,] n,n

— " (Dyiiy) Dyon(t) = 3 b Dybn(t) a@h(t)) ‘
ij=1 i=1

SC[ > D5 sy + 1 Avn(@)l 1 () + Do) + 80018y |-
(&:3)#(n,n)

L(B)
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Summing up, we may argue in the same way as for h = 0, and get

1 b
D20 (D)l 11 m) < ’[7 ot Min / D2 d
[D=0n(t)|| 212y < € \/i”U oY lwia(gy + ; m” u(s)|| 1 (g)ds

+ 1o (Ol

1 _ o X 1
Sc'[ﬁHuO?/JthLl(EM—/O = |D?a(s)| L1 (pyds + | ADn ()] 21 ()

where ¢/ = ¢(M, My, My, n, c2,c,). Coming back to N Uy, we obtain

1 b
||D2'Uh(t)||L1(QﬂUh) S C” {ﬁ”ugnwl,l(gm[]h) +/0 ml|D2U(S)||L1(QOUh)dS

+ 14w (®) 1200 | (3.17)

1 |
< I:\/>E||UHLI(QQU;,,) +/0 — |1 D*u(s)|| 11 (onm, ) ds + H.AUh(t)||L1(QmUh):|

where ¢ depends on M, My, My, n, ca,c,. Now, using (3.1), (3.2) and (3.8), we have

ID>u(®) L0y = 1D (D vn(®)) o1y = | Y D*on(®)l11() (3.18)
h=0 h=0

< we' LI, +/t L D2u(s) | ey ds + AU 1 o]

R OV N Y/ ) (@)

1 | 1
<c’”[—u +/ D?u(s ds + —|u },
> \/E“ HLI(Q) o \/t—isH ( )”Ll(Q) \/E” ||L1(Q)

depends on k,c”,cp,c;. Now using Gronwall’s generalized inequality (see

where ¢’

Lemma 1.5.7), we get
c

Vio

Then, by taking o = t, we get ||D?u(t)|| 11 (o) < st H|ul|1(q) for every t € (0,1). O

ID*u(t)|| L1 ) < llull L () (3.19)

3.1.1 Characterization of interpolation spaces between D(A;) and
LY(Q)
We can use Proposition 3.1.1 to characterize some interpolation spaces between D(A1)
and L'(Q).
Theorem 3.1.2. Let A; be as in Proposition 3.1.1; then for every « € (0,1/2) we have
(L1(Q), D(A1))an = W**1(Q)

where W2%! denotes the Sobolev space of fractional order (see Section A.2.1 for details).

PRrooF. It is sufficient to prove that

(L'(9), D(A1))a = (LNQ), WH(Q) N W1, (D))an
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in fact using Theorem A.2.7 we complete the proof.
First of all, let us observe that W?21((2) ﬁWi},(Q) — D(A;). Therefore, using Definition
A.2.2, we obtain

(L), WHHQ) N WL (2))a — (L), D(A1)a1.

Conversely, let ug € (L1(2), D(A1))a.1 and set for t € [0, 1]
¢
ug = ug — T(t)ug + T(t)ug = —/ A1T(s)upds + T (t)ug = vy + ve.
0

We have

t
loa sy < / JALT (o | 1 ey s
0

and since vy € W21(Q) N Wily(ﬂ), using (A.1), (3.1) and Proposition 3.1.1, we have

lvallw21(0) = IT(uoll L@y + Y I1Di;[T(#)uo = T(uo + T(uo] |1 (e)

ij=1

n 1
< colluollrr (o) + Z ||Dij/ T(s/2)A1T(s/2)uods|| L1 () + cslluollL1 (o)
t

i,7=1

1
< c{lulla + [ 5 IAT(/ 20l
t
Therefore for ¢ € [0,1], setting K (¢, ug) := K (¢, ug, L*(Q), W*1(Q) OWQL(Q)) we obtain

K(t,uo) = inlf+ gl + tlugllwz o))

wuo=ug+ug

< Mlvllzr) + tozllwz @)

t
< o [ 1T ol priards + el
0
1
+t/ 3_1||A1T(s/2)u0||L1(Q)ds)
t
On the other hand, choosing u$ = ug and u3 = 0 we get

K(t,uo) < [[uollr(q)-

Therefore
t
K(tﬂlo) < c(min(l,t)HuoHLl(Q) +/ ||A1T(S)U0|‘L1(Q)d8
0

1
+ t/ st ||A1T(s/2)u0||L1(Q)d5).
t
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Therefore for each o € (0,1) we get
/ ¢ UK (8 ug)dt < C{”UOHLl(Q) / ¢+ min(1, t)dt
0 0
+/ (t <1+a>/ | Ay (s)uo | 1 oy ds)et

/ t—/ ST AT (s)uo | 12 ey ds)et }

so that using Hardy inequalities stated in Theorem 1.5.6, we get

[ee] oo
| R < ofuoll + [ 5 IAT )0l xords )
0 0

and hence from Theorem 1.3.2 we get
(LM(9), D(A1))a,1 = (LHQ), WHQ) N W, () an

so, the result is proved. O

Using Theorem 3.1.2 we can improve the estimate of Proposition 3.1.1, under addi-
tional assumption on the initial datum; in fact, we have the following.

Proposition 3.1.3. Let Q, A, B be as in Section 2.5. Assume, in addition, c € W (Q);
then, there exist § € (1/2,1) and c4 depending on n, u, Q, Ms, cq, c1, ¢2, ¢3 ¢, such that
for every t € (0,1) and v € D(Ay) we have

| DT (tyul| 110y < callullwri(oy- (3.20)

PrROOF. We can repeat the proof of Proposition 3.1.1 until the first inequality in
(3.18), with ¢ > 0, so that we have

1 b1
D?u(t </<c"{— Ug |1, +/ D?u(s ds
|| ( )”Ll(ﬂ) = \/£|| ||VV1 1(Q) 0 \/t_is” ( )||L1(Q)
+ I Au(t) 2 o] (3.21)
Using (1.10), we get that for any «, 8 € (0,1) there is C such that
AT (t)ull pags.1) < Cllullpagen)-

By definition of interpolation, D 4(3,1) is continuously embedded in L(€2) for any 3 €
(0,1). Using the fact that D 4(a, 1) is the fractional Sobolev space W?2*1(Q) for a < 1/2
and that W11(Q) embeds in W?2%1(Q) for such «, we obtain, with constants C that may
change from a line to the other,

C
H.AT(t)uHLl(Q) SCHAT(t)UHDA(B,l) < A—atB HUHDA(a,l)

¢ c
= a8 |l w21 0) < prp—c ][ w0
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We choose then « € (0,1/2) and 8 € (0,1) is such a way that § =1 —«a+ (8 € (1/2,1),
and (3.21) becomes

C Lo
[ D*u(t)]| L1 () < tj”“o”Wl»l(Q) +/O \/ﬁ“Dzu(S)”Ll(Q)dS-

Therefore applying the Gronwall’s lemma and passing to the limit as ¢ — 0 we get
(3.20). O



