
Chapter 1

Preliminaries and auxiliary

results

In this chapter we collect some basic tools on the main topics used throughout the
thesis. We recall the basic definitions and the most important properties of semigroups
theory and measure theory. These recalls are only intended to fix some notations and
references and are confined to what will be useful in the sequel. For what concerns the
results on semigroups and sectorial operators we refer to [31], [19] while a more deep
analysis concerning results of measure theory can be found in [5] and [20].

1.1 Recall on semigroups theory

One of our aims is to prove existence, uniqueness and regularity properties for the
solution of the following parabolic second order problem

ut(t, x) = Au(t, x) t > 0, x ∈ Ω
u(0, x) = f(x) x ∈ Ω
Bu(t, x) = 0 t > 0, x ∈ ∂Ω

where A is a linear second order operator in divergence form and B is a non-tangential
first order differential operator defined on ∂Ω, and the initial datum f is taken in L1(Ω).
This problem is studied as an abstract Cauchy problem in a suitable Banach space,{

u′(t) = Au(t), t > 0
u(0) = x

(1.1)

by looking at the semigroup generated by A with a suitable domain. Here X is a complex
Banach space with norm ‖ · ‖X , A : D(A) ⊂ X → X is a linear operator and x ∈ X.
Of course the solution of (1.1) and its properties depend upon the class of operators
considered.
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In our case the operator A will be sectorial (see Definition 1.2.1 below). This ensures that
the solution of (1.1) admits an integral representation with a complex contour integral
and the solution map t 7→ u(t, x) of (1.1) is given by an analytic semigroup (see Definition
1.2.2).

1.2 Sectorial operators

Definition 1.2.1. Let A : D(A) ⊂ X → X be a linear operator. We say that A is
sectorial if there exist ω ∈ R, θ ∈]π2 , π[, M > 0 such that

ρ(A) ⊃ Σθ,ω = {λ ∈ C;λ 6= ω, |arg (λ− ω)| < θ} (1.2)

‖R(λ,A)‖L(X) ≤
M

|λ− ω|
∀λ ∈ Σθ,ω. (1.3)

Here the resolvent set ρ(A) is the set {λ ∈ C : ∃(λ−A)−1 ∈ L(X)} and for λ ∈ ρ(A),
R(λ,A) denotes the resolvent operator (λ−A)−1.
A sectorial operator is immediately closed since its resolvent set is not empty, hence its
domain D(A), endowed with the graph norm ‖x‖D(A) = ‖x‖X + ‖Ax‖X , is a Banach
space. Conditions (1.2) and (1.3) guarantee that the linear operator etA, defined for
t ≥ 0 as follows

e0A := I, etA :=
1

2πi

∫
ω+γr,η

etλR(λ,A) dλ, t > 0, (1.4)

where r > 0, η ∈ (π2 , θ), and

γr,η = {λ ∈ C; |arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C; |arg λ| ≤ η, |λ| = r}

oriented counterclockwise, is well defined and independent of r > 0 and η ∈ (π2 , θ).

Before stating the basic properties of etA, we recall when a family of operators
(T (t))t≥0 ⊂ L(X) is called a semigroup.

Definition 1.2.2. (Analytic semigroup) A family of operators (T (t))t≥0 ⊂ L(X) is called
a semigroup if

T (0) = I and T (t+ s) = T (t)T (s) t, s ≥ 0.

It is said to be strongly continuous if for each x ∈ X the function t 7→ T (t)x is continuous
in [0,+∞[. Moreover it is called an analytic semigroup of angle δ ∈]0, π/2] if the function
z 7→ T (z) is analytic in the sector Σδ = {z ∈ C : |arg z| < δ} and for every 0 < δ′ < δ

and x ∈ Y , being Y a closed subspace of X, it holds that

lim
z → 0

z ∈ Σδ′

T (z)x = x.

Proposition 1.2.3. Let A : D(A) ⊂ X → X be a sectorial operator, and (etA)t≥0

defined as in (1.4). Then the following properties hold:
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(i) etAx ∈ D(Ak) for each t > 0, x ∈ X, k ∈ N. Moreover if x ∈ D(Ak) then

AketAx = etAAkx, t ≥ 0; (1.5)

(ii) e(t+s)A = etAesA, t, s ≥ 0;

(iii) there are constants Mi, i = 0, . . . , k, such that

‖etA‖L(X) ≤M0e
ωt, t > 0,

‖tk(A− ωI)ketA‖L(X) ≤Mke
ωt, t > 0, (1.6)

where ω is given in Definition 1.2.1

(iv) the function t 7→ etA belongs to C∞((0,∞);L(X)) and

dk

dtk
etA = AketA, t > 0.

Moreover, it has an analytic extension in the sector

Σθ−π
2

= {λ ∈ C : λ 6= 0, |arg λ| < θ − π/2}.

These properties motivate the following definition.

Definition 1.2.4. Let A : D(A) ⊂ X → X be a sectorial operator. The family (etA)t≥0

defined by (1.4) is said to be the analytic semigroup generated by A in X.

Analogously one can prove that {etA}t≥0 is strongly continuous if and only if the
domain D(A) is dense in X, indeed limt→0 e

tAx = x if and only if x ∈ D(A).

The following results solve the problem of identifying the generator of a given analytic
semigroup. In the next lemma an integral representation of the resolvent of A in terms of
the semigroup generated by A is given. The following proposition states that for a given
analytic semigroup {T (t)}t≥0 there exists a sectorial operator A such that T (t) = etA.

Lemma 1.2.5. Let A : D(A) ⊂ X → X be as in Definition 1.2.1. Then for every λ ∈ C
such that Reλ > ω we have

R(λ,A) =
∫ ∞

0

e−λtetA dt. (1.7)

Proposition 1.2.6. Let {T (t)}t>0 be a family of linear bounded operators such that
t 7→ T (t) is differentiable with values in L(X) and verifies

(i) T (t)T (s) = T (t+ s) for every t, s > 0;

(ii) ‖T (t)‖L(X) ≤M0e
ωt, ‖tdT (t)

dt ‖L(X) ≤M1e
ωt for some ω ∈ R, M0,M1 > 0

(iii) limt→0 T (t)x = x for every x ∈ X.
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Then t 7→ T (t) is analytic in (0,∞) with values in L(X), and there exists a unique
sectorial operator A : D(A) ⊂ X → X such that T (t) = etA for every t ≥ 0.

Let us give a sufficient condition, seemingly weaker than (1.2)-(1.3), in order that a
linear operator be sectorial. It will be useful to prove that the realizations of some elliptic
partial differential operators are sectorial in the usual function spaces.

Proposition 1.2.7. Let A : D(A) ⊂ X → X be a linear operator such that ρ(A) contains
a half plane {λ ∈ C; Reλ ≥ ω}, and

‖λR(λ,A)‖L(X) ≤M, Reλ ≥ ω, (1.8)

with ω ∈ R, M > 0. Then A is sectorial.

Proof. By using the fact that if λ0 ∈ ρ(A) then the ball

{λ ∈ C; |λ− λ0| < ‖R(λ0, A)‖−1
L(X)}

is contained in ρ(A), we get that for every r > 0 the resolvent set of A contains the open
ball centered at ω + ir with radius |ω + ir|/M . The union of such balls contains the
sector S = {λ 6= ω : |arg (λ − ω)| < π − arctanM}. Moreover, for λ ∈ V = {λ : Reλ <
ω, |arg (λ− ω)| ≤ π − arctan(2M)}, λ = ω + ir − θr/M with 0 < θ ≤ 1/2, we can write

R(λ,A) =
∞∑
k=0

(−1)k(λ− ω − ir)kRk+1(ω + ir, A)

therefore

‖R(λ,A)‖L(X) ≤
∞∑
k=0

|λ− (ω + ir)|k Mk+1

(ω2 + r2)
k+1
2

≤ 2M
r
.

On the other hand, since λ = ω + ir − θr/M , the following estimate holds

r ≥ (1/(4M2) + 1)−1/2|λ− ω|.

Finally
‖R(λ,A)‖L(X) ≤ 2M(1/(4M2) + 1)1/2|λ− ω|−1

and the claim is proved.

Thus in order to prove sectoriality for a given elliptic operator one needs to prove

(i) existence and uniqueness for the solution of a boundary value problem of the type{
λu(x)−Au(x) = f(x) in Ω ,

Bu(x) = g(x) in ∂Ω ,

at least for Reλ large, and

(ii) the resolvent estimate (1.8).
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1.2.1 Perturbation of sectorial operators

When dealing with second order partial differential operators, it is often easier to
study operators with smooth coefficients or without lower order terms. Subsequently,
one can try to remove the smoothness assumption by using an approximation argument
and to add lower order terms with a perturbation argument. In this case it is important to
know that sectoriality is preserved and this can be guaranteed by an abstract perturbation
result. More specifically, let A : D(A) ⊂ X → X be a sectorial operator, generator of the
analytic semigroup (T (t))t≥0, and consider another operator B : D(B) ⊂ X → X. The
perturbation theory gives conditions under which the sum A+B is a sectorial operators,
too, and therefore generates itself an analytic semigroup.
If B is “small” with respect to A, in a suitable sense, we say that the operator A is
perturbed by the operator B or that B is a perturbation of A. Before stating the main
result we need in the sequel, we observe that the sum A+B defined in the natural way

(A+B)x := Ax+Bx

and it is meaningful only for

x ∈ D(A+B) := D(A) ∩D(B),

a subspace that in general could reduce to {0}.
We start with a theorem of perturbation (whose proof can be found in [19]) where the
simplest case, that is the case in which the perturbing operator is bounded, is considered.
In this case, of course, D(B) = X.

Theorem 1.2.8. Let (A,D(A)) be the generator of a strongly continuous semigroup
(T (t))t≥0 on a Banach space X satisfying ‖T (t)‖ ≤ Meωt for every t ≥ 0, ω ∈ R and
M ≥ 1. If B ∈ L(X), then

A+B with D(A+B) := D(A)

generates a strongly continuous semigroup (S(t))t≥0 satisfying

‖S(t)‖ ≤Me(ω+M‖B‖)t t ≥ 0.

Moreover if (T (t))t≥0 is analytic, then so is the semigroup (S(t))t≥0 generated by A+B.

Whereas a bounded perturbation of an operator preserves its properties, the sum of
two unbounded operators raises more delicate questions since the domain D(A) ∩D(B)
can be too small and the good properties of single operators can be destroyed in the sum.
For this reason we need a definition for perturbing operators for which this situation is
avoided.

Definition 1.2.9. Let A : D(A) ⊂ X → X be a linear operator on the Banach space X.
An operator B : D(B) ⊂ X → X is called A-bounded if D(A) ⊆ D(B) and if there exist
constants a, b ∈ R+ such that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖ (1.9)
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for all x ∈ D(A). The A-bound of B is

a0 := inf{a ≥ 0 : there exists b ∈ R+ such that (1.9) holds}.

Finally we prove a useful perturbation theorem that will be used later.

Theorem 1.2.10. Let A : D(A) ⊂ X → X be a sectorial operator and let B : D(B) ⊂
X → X be a A-bounded operator with A-bound a0. Then there exists a constant α > 0
such that if a0 < α, then A+B : D(A) → X is sectorial.

Proof. Let ω ∈ R be such that R(λ,A) exists and ‖λR(λ,A)‖ ≤ M for Reλ ≥ ω.

We write λ−A−B = (I −BR(λ,A))(λ−A) and we observe that

‖BR(λ,A)x‖ ≤ a‖AR(λ,A)x‖+ b‖R(λ,A)x‖ ≤
(
a(M + 1) +

bM

|λ|
)
‖x‖ ≤ 1

2
‖x‖

if a(M + 1) ≤ 1/4 and bM/|λ| ≤ 1/4. Therefore, if a ≤ α := (4(M + 1))−1 and for Reλ
sufficiently large, ‖BR(λ,A)‖ ≤ 1/2 and

‖(λ−A−B)−1‖ ≤ ‖R(λ,A)‖‖(I −BR(λ,A))−1‖ ≤ 2M
|λ|

The statement now follows from Proposition 1.2.7.

1.3 Analytic semigroups and spaces DA(θ, p)

In this section we present some results on the intermediate spaces DA(θ, p) coming
from a sectorial operator A. The classical results on interpolation between Banach spaces
are collected in Appendix A. The definition of the spaces DA(θ, p) is due to H. Berens
and P. L. Butzer [9]. They can be defined in several different ways, one of them comes
out from the behavior of AT (t)x near t = 0. We have seen in Proposition 1.2.3 that, for
each x ∈ X, ‖tAT (t)x‖ is bounded in (0, 1), whereas, for every x ∈ D(A), ‖AT (t)x‖ is
bounded in (0, 1). This behavior of AT (t) leads to the definition of a class of intermediate
spaces between X and D(A). In this section we set 1/∞ = 0.

Definition 1.3.1. Let 0 < θ < 1, 1 ≤ p ≤ ∞, and (θ, p) = (1,∞), we set

DA(θ, p) = {x ∈ X : t 7→ ‖t1−θ−1/pAT (t)x‖ ∈ Lp(0, 1)}

endowed with the norm
‖x‖DA(θ,p) = ‖x‖X + [x]DA(θ,p),

where [x]DA(θ,p) = ‖t1−θ−1/pAT (t)x‖Lp(0,1). Define

DA(θ) = {x ∈ DA(θ,∞) : lim
t→0

t1−θAT (t)x = 0}.
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Now, we state an important characterization of the space DA(θ, p) that will be used
in the sequel and whose proof can be found in [9, Theorem 3.4.2 and 3.5.3]. We denote
by (X,Y )θ,p the real interpolation space between X and Y .

Theorem 1.3.2. Assume that (A,D(A)) generates an analytic semigroup on a Banach
space X. Then for 0 < θ < 1 and 1 ≤ p ≤ ∞, and for (θ, p) = (1,∞) we have

DA(θ, p) = (X,D(A))θ,p

moreover, for 0 < θ < 1,
DA(θ) = (X,D(A))θ

with equivalence of the respective norms.

The previous characterization provides several properties of these spaces deduced
from the similar ones of the real interpolation spaces (see Appendix A). Some of these
properties are recalled in the following corollary.

Corollary 1.3.3. (i) Suppose that A and B generate bounded analytic semigroups in
X. If D(A) = D(B) (with equivalence of the norms) then

DA(θ, p) = DB(θ, p) and DA(θ) = DB(θ).

(ii) The spaces DA(θ, p) and DA(θ) belong to the class Jθ between X and D(A), i.e.,
there is a constant c > 0 such that

‖x‖DA(θ,p) ≤ c‖x‖1−θX ‖x‖θD(A) ∀x ∈ D(A).

(iii) For 0 < θ1 < θ2 <∞ and 1 ≤ p ≤ ∞ and for (θ2, p) = (1,∞), we have

DA(θ2, p) ⊂ DA(θ1, p).

For 0 < θ < 1, 1 ≤ p1 ≤ p2 <∞,

DA(1,∞) ⊂ DA(θ, p1) ⊂ DA(θ, p2) ⊂ DA(θ) ⊂ DA(θ,∞) ⊂ D(A).

Now we give an useful estimate for the function t 7→ AkT (t) as t → 0+ in the
intermediate spaces just introduced. In the next proposition we set DA(0, p) = X for
every p ∈ [1,∞].

Proposition 1.3.4. Let (α, p), (β, p) ∈ (0, 1)× [1,+∞]∪{(1,∞)}, and let k ∈ N. Then
there exists C = C(k, p, α, β) such that

‖tk−α+βAkT (t)‖L(DA(α,p),DA(β,p)) ≤ C 0 < t ≤ 1 (1.10)

The statement holds also for k = 0, provided α ≤ β.



20

Proof. Without loss of generality we can assume that A satisfies (1.2), (1.3) with
ω = 0, otherwise we consider A− ωI. By (1.6), we get that

Ck = sup
0<t≤1

‖tkAkT (t)‖L(X) <∞ for all k ∈ N (1.11)

First we prove the estimate (1.10) for α = 0. Let x ∈ X, k ∈ N ∪ {0}. Since DA(β, p) is
of class Jβ between X and D(A), we get that

‖z‖DA(β,p) ≤ c‖z‖βD(A)‖z‖
1−β
X ∀ z ∈ D(A).

Thus, using (1.11), we get

‖tkAkT (t)x‖DA(β,p) ≤ c‖tkAkT (t)x‖βD(A)‖t
kAkT (t)x‖1−βX ≤ ct−β‖x‖X

for 0 < t ≤ 1, which is the claim for α = 0 and k ∈ N ∪ {0}.
Now, let k ∈ N, 0 < α < 1 and let x ∈ DA(α, p) or x ∈ DA(1,∞). Then, using (1.5), we
get

‖tkAkT (t)x‖DA(β,p) = ‖tkAk−1T (t/2)AT (t/2)x‖DA(β,p)

≤ 2k‖(t/2)k−1+αAk−1T (t/2)‖L(X,DA(β,p))‖(t/2)1−αAT (t/2)x‖X
≤ 2k+β−αtα−βC(k − 1, p, 0, β)‖x‖DA(α,∞).

Now, let k = 0, α ≤ β and x ∈ DA(α, p). Then for 0 < s ≤ 1,

‖T (t)x‖DA(β,p) = ‖s1−β−1/pAT (s)T (t)x‖Lp(0,1;X) + ‖T (t)x‖X
≤ C0(‖s1−α−1/pAT (s)T (t)x‖Lp(0,1;X) + ‖x‖X) = C0‖x‖DA(α,p)

which allows us to deduce the claim for k = 0 and α = β. Finally, for β > α, we get

‖T (t)x‖DA(β,p) ≤ ‖T (1)x‖DA(β,p) +
∥∥∥∫ 1

t

AT (s)x ds
∥∥∥
DA(β,p)

≤ C(0, p, 0, β)‖x‖X + C(1, p, α, β)‖x‖DA(α,∞)

∫ 1

t

sα−β−1 ds

≤ C(0, p, 0, β)‖x‖X + C(1, p, α, β)‖x‖DA(α,∞)
t−β+α

β − α
.

that complete the proof also for k = 0.

1.4 Preliminaries of measure theory

In this section we briefly review the basic definitions and the most important prop-
erties of measure theory. The main reference for our approach is [5] and other references
for related topics are [20], [21] and [37].

Let Ω be an open subset of Rn and let B(Ω) be the σ-algebra of Borel subsets of Ω,
that is, the σ- algebra generated by the open subsets of Ω. We call the pair (Ω,B(Ω)) a
measure space.
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Definition 1.4.1. Let (Ω,B(Ω)) be a measure space and let m ∈ N, m ≥ 1. We say
that µ : B(Ω) → Rm is a measure if

µ(∅) = 0 (1.12)

and µ is σ- additive on B(Ω), i.e., for any sequence Eh of pairwise disjoint elements of
B(Ω)

µ(
∞⋃
h=0

Eh) =
∞∑
h=0

µ(Eh). (1.13)

We denote by [M(Ω)]m the space of Rm -valued measures. If m > 1 we say that µ is a
vector measure, whereas if m = 1 we say that µ is a real measure.

Definition 1.4.2. (Positive measure) If µ : B(Ω) → [0,+∞] satisfies (1.12) and (1.13)
then µ is called a positive measure or a Borel measure.

Notice that positive measures are not a particular case of real measures since real
measures must be finite according to the previous definition. In this latter case we say
that µ is a finite measure if µ(Ω) <∞. A positive measure µ such that µ(Ω) = 1 is also
called a probability measure.

For a real, vector or positive measure we can define its total variation measure.

Definition 1.4.3. We define the total variation of µ the set function denoted by |µ| :
B(Ω) → [0,+∞] such that for every A ∈ B(Ω)

|µ|(A) := sup

{ ∞∑
h=0

|µ(Ah)| : Ah ∈ B(Ω) pairwise disjoint , A =
∞⋃
h=0

Ah

}
.

It can be shown that if µ is a measure then |µ| is a positive finite measure.

Definition 1.4.4. (Radon measure) If a Borel measure is finite on compact sets then it
is called positive Radon measure.
A Radon measure on Ω is a real or vector valued set function µ that is a measure
on (K,B(K)) for every compact set K ⊂ Ω. It is called a finite Radon measure if
µ : B(Ω) → Rm is a measure in the sense specified before.

If m > 1 and B ∈ B(Ω), then µ(B) = (µ1(B), . . . , µm(B)) and µi : B(Ω) → R are
Radon measures.

Definition 1.4.5. (Support of a measure) Let µ be a positive measure on Ω; we call
support of µ the closed set of all points x ∈ Ω such that µ(U) > 0 for every neighborhood
U of x and we denote it by supp µ. If µ is a real or vector measure, we call the support
of µ the support of |µ|.

For a positive, real or vector measure on the measure space (Ω,B(Ω)) and for E ∈
B(Ω) we denote by µ E the restriction of µ to E so defined: µ E(F ) = µ(E ∩ F ) for
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every F ∈ B(Ω); moreover, if µ is a Borel (Radon) measure and E is a Borel set, then
the measure µ E is a Borel (Radon measure), too. When µ E = µ we say that µ is
concentrated on E. We say that a set E is µ-negligible if there exists B ⊃ E, B ∈ B(Ω)
such that µ(B) = 0. Moreover a Borel set E is called µ-measurable if E is of the form
E ∪N with N µ-negligible.
We now state the classical Riesz representation theorem. Recall that we denote by Cc(Ω)
the space of continuous functions with compact support and by C0(Ω) its completion with
respect the sup norm.

Theorem 1.4.6. (Riesz Representation Theorem) Let L : Cc(Ω;Rm) → R be a linear
functional. Suppose that there exists c < +∞ such that for all f ∈ Cc(Ω;Rm)

|L(f)| ≤ c‖f‖L∞(Ω).

Then, there is a unique Rm- valued Radon measure µ on Ω such that

L(f) =
∫

Ω

f dµ =
m∑
h=1

∫
Ω

fhdµh ∀f ∈ Cc(Ω;Rm).

Moreover
sup{L(f) : f ∈ Cc(Ω;Rm), ‖f‖L∞(Ω) ≤ 1} = |µ|(Ω).

1.4.1 Weak convergence of measures

From the Riesz theorem, it follows that the space of [M(Ω)]m, endowed with the norm
‖µ‖ := |µ|(Ω), is linearly isometric to the dual space of Cc(Ω;Rm) and so it is a Banach
space. This fact allows us to consider several topologies on [M(Ω)]m. Of particular
interest are the following two different kinds of convergence induced by Cc(Ω;Rm) and
C0(Ω;Rm), respectively.

Definition 1.4.7. Let µk, µ be Rm- valued Radon measures on Ω.

(i) We say that µk converges locally weakly* to µ and write µk
w∗loc−→ µ if∫

Ω

f dµk −→
∫

Ω

f dµ ∀f ∈ Cc(Ω;Rm).

(ii) We say that µk converges weakly* to µ and write µk
w∗−→ µ if∫

Ω

f dµk −→
∫

Ω

f dµ ∀f ∈ C0(Ω;Rm).

An important connection between these two different kinds of convergence is given by
the following property. Let µk, µ be Rm- valued finite Radon measures. Then µk

w∗−→ µ

if and only if µk
w∗loc−→ µ and the norms |µk|(Ω) are bounded.
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Definition 1.4.8. (Convergence in measure) We say that (Eh) converges to E in mea-
sure in Ω if

|Ω ∩ (Eh∆E)| → 0 as h→∞.

We say that Eh locally converges in measure to E if (Eh) converges to E in measure in
every open set A with A ⊂⊂ Ω.

We can notice that these convergences correspond to L1(Ω) and L1
loc(Ω) convergences

of the characteristic functions.

1.4.2 Differentiation of measures

Two important relations between measures are presented in the following definition,
the absolute continuity and the mutually singularity.

Definition 1.4.9. (Absolute continuity and singularity) Let µ be a positive measure and
σ a real or a vector measure on the measure space (Ω,B(Ω)); we say that σ is absolutely
continuous with respect to µ, and write σ << µ, if for A ∈ B(Ω), µ(A) = 0 implies
σ(A) = 0. If the measures µ, σ are both positive, we say that they are mutually singular
and write µ⊥σ if there exists E ∈ B(Ω) such that µ(E) = 0 and σ(Ω \ E) = 0.

This latter definition can be extended also to vector measures: in that case we say
that two vector measures µ and σ are mutually singular if |µ| and |ν| are so.

Theorem 1.4.10. (Besicovitch differentiation theorem) Let µ be a positive Radon mea-
sure and σ a real or vector valued measure both defined on the same open set Ω of Rn.
Then, for µ- a.e. x ∈ Ω there exists the limit

lim
ρ→0

σ(Bρ(x))
µ(Bρ(x))

= Dµσ(x)

and it is equal to +∞ for x /∈ suppµ. The function Dµσ(x) ∈ [L1
loc(Ω, µ)]m and for every

Borel set B ∈ B(Ω)

σ(B) =
∫
B

Dµσ(x) dµ(x) + σs(B), (1.14)

where σs⊥µ and is concentrated on a Borel set µ-negligible.

By the representation (1.14) of σ we can deduce that the integral part is absolutely
continuous with respect to µ, and σs is singular.
This decomposition of σ with respect to µ is called Lebesgue decomposition and it is
uniquely determined. The function Dµσ is called the derivative of σ respect to µ and it
is usually denoted by σ/µ. The proof of the Besicovitch theorem, as is stated here, can
be found in [41].
An useful decomposition immediately follows from the Besicovitch theorem if we take
into account that each real or vector measure µ is absolute continuous with respect to
its total variation |µ|.
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Corollary 1.4.11. (Polar decomposition) Let µ be a Rm-valued measure on the measure
space (Ω,B(Ω)); then there exists a unique Sm−1-valued function f ∈ (L1(Ω, |µ|))m such
that µ = f |µ|.

1.4.3 Hausdorff measures and rectifiable sets

The notion that we are going to introduce is a mild regularity property of subsets
of Rn known as rectifiability. First we provide the definition of Hausdorff k-dimensional
measures. This class of measures is defined in terms of the diameters of suitable cov-
erings and allows an intrinsic definition of k-dimensional area without any reference to
parametrizations.

Definition 1.4.12. (Hausdorff measures) Let A ⊂ Rn, k ∈ [0,∞) and δ ∈ (0,∞].
Define

Hk
δ (A) :=

ωk
2k

inf
{∑
i∈I

[diam(Ai)]k : A ⊂
⋃
i∈I

Ai, diam(Ai) < δ
}

(1.15)

for finite or countable covering {Ai}i∈I (with diam ∅ = 0). Here

ωk =
πk/2

Γ(1 + k/2)

where Γ(s) =
∫∞
0
xs−1e−x dx is the Euler gamma function.

For A and k as above, define

Hk(A) := lim
δ→0

Hk
δ (A). (1.16)

Remark 1.4.13. We notice that the limit in (1.16) exists (finite or infinite) since δ 7→
Hk
δ (A) is decreasing in (0,∞]. It is also worth noticing that requiring δ → 0 forces the

coverings to follow the local geometry of the set A.
Finally let us observe that H0 corresponds to the counting measure and it is not trivial
to prove that Hn = Ln on Rn.

Definition 1.4.14. (Countably Hn−1-rectifiable sets) We say that E ⊂ Rn is countably
Hn−1-rectifiable if there exist (at most) countably many C1 embedded hypersurfaces Γi ⊂
Rn such that

Hn−1(E \
⋃
i

Γi) = 0.

1.5 Some further preliminaries

In this section we collect some miscellaneous classical results, which is useful to state
in the form we shall use later.
Throughout this thesis, we shall consider functions defined in Rn or in subset of Rn,
particularly in Rn

+ = {x = (x1, . . . , xn) ∈ Rn; xn ≥ 0} and in domains with uniformly
C2 boundary ∂Ω. Let Ω be an open set in Rn, and m ∈ N. Let us give the definition.
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Definition 1.5.1. (Uniformly Cm domain) We say that the boundary ∂Ω is uniformly
Cm if there exist r, L > 0 and a (at most countable) collection of open balls Uj = {x ∈
Rn; |x − xj | < r}, j ∈ N, covering ∂Ω and such that there exists an integer k with the
property that

⋂
j∈J Uj = ∅ for all J ⊂ N with more than k elements. Moreover there

exist coordinate transformations ϕj : Uj → B(0, 1), Cm diffeomorphisms such that

ϕj(Uj ∩ Ω) = B+(0, 1) = B(0, 1) ∩Rn
+

ϕj(Uj ∩ ∂Ω) = B(0, 1) ∩ {xn = 0}.

Moreover, all the coordinate transformations ϕj and their inverses are supposed to have
uniformly bounded derivatives up to the order m,

sup
j∈N

∑
1≤|α|≤m

(
‖Dαϕj‖∞ + ‖Dαϕ−1

j ‖∞
)
≤ L

We shall use the classical Sobolev embedding theorems which are recalled in the next
lemma. We refer to [1] for their proof.

Theorem 1.5.2. Let Ω be either Rn, or an open set in Rn with uniformly C1 boundary.
Let p > n and set α = 1 − n

p . Then W 1,p(Ω) ⊂ Cαb (Ω). Moreover, there exists C > 0
such that for every u ∈W 1,p

loc (Ω) and for every x0 ∈ Ω we have

(i) ‖u‖L∞(Ωx0,r) ≤ Cr−
n
p (‖u‖Lp(Ωx0,r) + r‖Du‖Lp(Ωx0,r)),

(ii) [u]Cα(Ωx0,r) ≤ C‖Du‖Lp(Ωx0,r).

where Ωx0,r = Ω ∩B(x0, r) and [u]Cα(Ω) = supx,y∈Ω
|u(x)−u(y)|
|x−y|α .

Another useful tool is a classical result of functional analysis known as continuity
method recalled in the next theorem.

Theorem 1.5.3. Let X,Y be Banach spaces, L0 and L1 be two linear and continuous
operators from X to Y . We consider the family of operators

Lt = (1− t)L0 + tL1, t ∈ [0, 1],

and we suppose that there exists a constant C > 0 such that

‖Ltx‖Y ≥ C‖x‖X , x ∈ X, t ∈ [0, 1]. (1.17)

If L0 is surjective, then L1 is surjective too (hence bijective for the estimate (1.17)).

Proof. Let V = {t ∈ [0, 1] : Lt is bijective}. By hypothesis V 6= ∅ since 0 ∈ V . If
t0 ∈ V then Lt0 is bijective and ‖L−1

t0 ‖ ≤
1
C by (1.17). Moreover, since

Lt = Lt0(I + (t− t0)L−1
t0 (L1 − L0))
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Lt is invertible if and only if (I + (t − t0)L−1
t0 (L1 − L0)) is invertible. But, if |t − t0| <

C
‖L1‖+‖L0‖ then ‖(t− t0)L−1

t0 (L1−L0)‖ < 1 and Lt is invertible. Setting δ = C
2(‖L1‖+‖L0‖)

we get that [0, δ] ⊂ V . Analogous argument proves that [δ, 2δ] ⊂ V and so on.
Finally, after a finite number of steps we get that [0, 1] ⊂ V .

Finally, it is useful to recall two well-known inequalities due to G. H. Hardy [25]. For
the proof we use two lemmas. The first follows from the Hölder inequality and its proof
can be found in [25, Theorem 191].

Lemma 1.5.4. Let Ω be an open set of Rn, p > 1 and p′ = p/(p−1); then ‖f‖pLp(Ω) ≤ C0

if and only if ‖fg‖L1(Ω) ≤ C
1/p
0 C

1/p′

1 for all g such that ‖g‖p
′

Lp′ (Ω)
≤ C1.

We shall deduce Theorem 1.5.6 from the following more general theorem whose
method of proof is due to Schur, even though in [38], it is assumed p = 2.

Lemma 1.5.5. Let p > 1 and p′ = p/(p − 1). Let K(x, y) be a non-negative and
homogeneous of degree −1 function, (i.e. K(λx, λy) = λ−1K(x, y)) such that∫ ∞

0

K(x, 1)x−1/p dx =
∫ ∞

0

K(1, y)y−1/p′ dy = k.

Then, for every non-negative functions f ∈ Lp(0,∞) and g ∈ Lp′(0,∞) we get∫ ∞

0

∫ ∞

0

K(x, y)f(x)g(y) dx dy ≤ k
(∫ ∞

0

fp(x) dx
)1/p(∫ ∞

0

gp
′
(y) dy

)1/p′

, (1.18)

∫ ∞

0

dy
( ∫ ∞

0

K(x, y)f(x) dx
)p ≤ kp

∫ ∞

0

fp(x) dx (1.19)∫ ∞

0

dx
( ∫ ∞

0

K(x, y)g(y) dy
)p′ ≤ kp

′
∫ ∞

0

gp
′
(y) dy (1.20)

Proof. We have∫ ∞

0

f(x) dx
∫ ∞

0

K(x, y)g(y) dy =
∫ ∞

0

f(x) dx
∫ ∞

0

xK(x, xw)g(xw) dw

=
∫ ∞

0

f(x) dx
∫ ∞

0

K(1, w)g(xw)dw

=
∫ ∞

0

K(1, w) dw
∫ ∞

0

f(x)g(xw) dx

if any of integrals are convergent. Applying Lemma 1.5.4 to the inner integral, and
observing that ∫

gp
′
(xw) dx =

1
w

∫
gp

′
(y) dy

we obtain (1.18). Finally (1.19) and (1.20) can be deduced by Lemma 1.5.4, indeed by
(1.18) we get that

‖hg‖L1(0,∞) ≤ (kpC0)1/pC
1/p′

1
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holds for all g ∈ Lp
′
(Ω) where h(y) =

∫ ∞

0

K(x, y)f(x)dx, C0 =
∫ ∞

0

fp(x) dx and

C1 =
∫ ∞

0

gp
′
(y) dy. Thus, Lemma 1.5.4 implies that

‖h‖pLp(0,∞) ≤ kpC0

whence (1.19) is proved. The same argument can be used to prove (1.20).

Now, an immediate application of Lemma 1.5.5 is obtained by specializing the choice
of K(x, y).

Theorem 1.5.6. (Hardy’s inequalities) Let α > 0, 1 ≤ p ≤ ∞. If ψ(s) is a non-negative
measurable function with respect to the measure ds/s on (0,∞), then{∫ ∞

0

(
t−α

∫ t

0

ψ(s)
ds

s

)p dt
t

}1/p

≤ 1
α

{∫ ∞

0

(s−αψ(s))p
ds

s

}1/p

(1.21)

and {∫ ∞

0

(
tα
∫ ∞

t

ψ(s)
ds

s

)p dt
t

}1/p

≤ 1
α

{∫ ∞

0

(sαψ(s))p
ds

s

}1/p

(1.22)

Proof. Let α > 0, 1 ≤ p ≤ ∞, then the function

K(s, t) :=

{
sα+ 1

p−1t−α−
1
p s < t

0 elsewhere

satisfies the assumption of Lemma 1.5.5 with k = 1
α . Then (1.21) can be obtained

by (1.19) with K(s, t) as before and f(s) = s−α−
1
pψ(s). Finally (1.22) can be proved

similarly choosing K and f in a suitable way.

The next lemma is used only in Propositions 3.1.1 and 3.1.3. We omit the proof which
can be considered a particular case of [26, Lemma 7.1.1].

Lemma 1.5.7. (Gronwall’s generalized inequality) Suppose a, b ≥ 0, 0 ≤ α, β < 1,
0 < T <∞. Let u(t) be a nonnegative and locally integrable function on 0 ≤ t ≤ T with

u(t) ≤ at−α + b

∫ t

0

(t− s)−βu(s) ds

on (0, T ); then there exists a constant C(b, β, T ) <∞ such that

u(t) ≤ at−α

1− α
C(b, β, T ).




