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Riassunto

Lo spazio delle funzioni a variazione limitata, usualmente denotato con BV, ha avuto

ed ha tuttora un ruolo importante in numerosi problemi nell’ambito del Calcolo delle
Variazioni. Le principali proprieta che fanno di questo spazio 'ambiente adatto in cui
formulare problemi variazionali riguardano i risultati di compattezza, relativi a funzio-
nali integrali a crescita lineare nel gradiente, e la possibilita di supporre che tali funzioni
ammettano delle ipersuperfici di discontinuita, caratteristica importante in numerosi pro-
blemi fisici e di natura geometrica. Il prototipo dei funzionali integrali a crescita lineare
nel gradiente ¢ il funzionale dell’area, mentre, nell’ambito dei problemi variazionali con
discontinuita, il primo successo della teoria risale alla risoluzione completa del problema
isoperimetrico in R"™. Piu recentemente, sono stati oggetto di studio i problemi con dis-
continuitd libere (introdotti da E. De Giorgi in [17]), tra cui ricordiamo il problema della
segmentazione delle immagini digitali e problemi di meccanica delle fratture. L’interesse
verso tali problemi e sicuramente motivato dalle applicazioni alla biologia, all’informatica
ed alla fisica, in cui rispettivamente 1’elaborazione delle immagini digitali e le proprieta
elasto-plastiche dei materiali costituiscono elementi di notevole rilevanza. Si noti che le
funzioni di Sobolev non godono di proprieta di compattezza altrettanto generali quanto
le funzioni BV, né ammettono insiemi di discontinuita (n — 1)-dimensionali.
Lo studio vasto e accurato di questa classe di funzioni ha prodotto una teoria completa
ed esauriente che comprende risultati di approssimazione, teoremi di immersione, teo-
remi di traccia e proprieta fini. Per un’analisi approfondita e dettagliata di tale classe di
funzioni e delle relative proprieta facciamo riferimento al libro di L. Ambrosio, N. Fusco
e D. Pallara [5].

L’obiettivo di questa tesi € lo studio di alcuni legami esistenti tra la teoria delle
funzioni a variazione limitata e la teoria dei semigruppi generati da operatori ellittici del
secondo ordine. Ricordiamo che, dati un aperto Q2 di R" ed u € L*(Q), si dice che u ¢ una
funzione a variazione limitata (e si scrive u € BV(Q2)) se la sua derivata distribuzionale
Du e rappresentabile mediante una misura di Radon la cui variazione totale cosi definita

Dul@) =sup{ [ wdive do s € CHQR), ol <o) < 1} (1)

¢ finita. Nel caso particolare in cui u = xpg, la funzione caratteristica di un insieme
E C R”, si definisce perimetro di E in  la variazione totale di Dypg; in tal caso
scriveremo P(E,Q) = |Dxg|(Q2) e diremo che E ¢ un insieme di perimetro finito in €2 se
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P(E,Q) < co. Quando © = R™ scriveremo semplicemente P(E).

Il punto di partenza dei risultati di ricerca presentati in questa tesi ¢ il lavoro [15] in cui
De Giorgi da una definizione di variazione totale, che risulta equivalente a (1) se = R™.
L’interesse di De Giorgi in [15] era rivolto allo studio delle proprieta di struttura degli
insiemi di perimetro finito, a possibili estensioni di disuguaglianze isoperimetriche e ad
eventuali generalizzazioni della formula di Gauss-Green e percio si limita ad approssimare
funzioni L*°(R™) tramite opportuni nuclei di convoluzione. Assegnata f € L (R"),
definisce

W(t)f(z) = (Gi * f) ()
dove Gy(x) ¢ il nucleo di Gauss-Weierstrass

z|2
Gi(x) = (47rt)_”/26_%, t>0,zeR"

Questa particolare scelta fa si che W (t) f soddisfaccia una legge di semigruppo
W(t+s)f(x)=WE)W(s)f(z) t,s>0

e che la funzione t — H(t) := |[DW(t)f| ;1 (rn) risulti una funzione monotona non
crescente in (0, 00); infatti per ¢, s > 0 risulta

[DW (t+5) fll L2 @) =1 DW ()W () fl| L ey =W (@) DW (5) fll L2 gy SIDW (5) fll L2 )

Tale monotonia garantisce l’esistenza del limite di H(¢) per ¢t — 0. Dato E C R"™, De
Giorgi definisce

P(E) = Jim [ [DW(t)xs] dr (2)

Si osservi come la definizione (2) ha senso per una qualsiasi f € LP(R™), p € [1, 00]. Cosi,
analogamente a (2), si potrebbe dare la definizione di variazione totale per una funzione
f € LY(R™) che risultera equivalente a quella data in (1), pertanto

DAY = Jimy [ 1DW )] da 3

e P(E) = P(E). D’altra parte, si noti che W(t)f rappresenta la soluzione dell’equazione
del calore in R™ con dato iniziale f, cioe W (t)f risolve

{ Ov(t, z) = Av(t, ) te (0,00), z€R" )
v(0,2) = f(x) zeR™

Pertanto all’uguaglianza (3) si puo dare un ulteriore significato. Pili precisamente, par-
tendo dalla definizione (1), la formula (3) stabilisce un legame tra la variazione totale di
una funzione f € L'(R") e la soluzione dell’equazione del calore in R™ con dato iniziale
f. La definizione di perimetro (o di variazione totale) in R™ data da De Giorgi mette in
relazione teorie apparentemente distanti tra loro, come la teoria delle funzioni a varia-
zione limitata e la teoria delle equazioni di evoluzione.

Il problema che ci siamo posti ¢ stato quello di vedere se tale relazione possa essere
estesa al caso di domini, cioe se partendo dalla definizione (1) di variazione totale in



un dominio, sia possibile stabilire una relazione tipo (3) con la soluzione di un generico
problema parabolico. D’altronde il caso del Laplaciano in R™ puo essere considerato un
caso modello e quindi il problema (4) il prototipo di tali problemi. Un elemento di novita
nel nostro lavoro di ricerca & costituito dal fatto che considereremo {2 aperto generico;
infatti in letteratura si trovano molti risultati riguardanti la teoria L', la maggior parte
dei quali ambientati in R™ o in aperti limitati. Descriviamo brevemente le ipotesi con-
siderate in questa tesi. Sia € un aperto di R™ con bordo uniformemente di classe C? e
consideriamo A un operatore uniformemente ellittico in forma di divergenza

A(z,D) = Z Di(ai;(x)D;) + Z bi(2)D; + c(x).

Se Q # R"™, associamo ad esso 'operatore al bordo B di tipo conormale

n

B(x,D) = Z aij(z)vi(x) Dy,

i,j=1

dove v ¢ la normale esterna al bordo 0f2.
Nel Capitolo 3 forniamo delle ipotesi sui coefficienti di A and B affinché il problema

Ow—Aw =0 in (0,00) x Q
w(0) = ug in Q (5)
Bw =0 in (0, 00) x 00

abbia un’unica soluzione per ogni dato ug € L*(£2) e tale soluzione sia tale che il gradiente
e le derivate seconde spaziali soddisfacciano delle stime opportune in norma L!'. La
scelta di condizioni al bordo di tipo conormale sembra la piu naturale ai fini di quello
che vogliamo misurare. Il metodo usato per provare ’esistenza di tale soluzione consiste
nel dimostrare la settorialita di (A;, D(A;)) cioe della realizzazione di A(-, D) in L*(Q)
con condizioni omogenee al bordo B(, D) = 0.

Per ottenere la settorialita di (A1, D(A1)) € stato necessario provare risultati di esistenza
e unicita per problemi ellittici del tipo

w—A(,Dw=f x€Q
{ B(, Dyw = 0 z € 00 (6)

con dati f € L'(Q2), insieme con alcune stime sul risolvente. Tali risultati sono stati
ottenuti per dualita dalla teoria L>°. Gli argomenti di dualita richiedono ovviamente e-
sistenza per il problema duale e ipotesi di maggiore regolarita per i coefficienti. Tali
ipotesi sono state successivamente indebolite con argomenti di perturbazione. Nelle
ipotesi

aij = aj; € W»®(Q) and b, c € L(Q).

e di uniforme ellitticita per la matrice A = (ai;)ij,

n

,LL71|§|2 S Z aij(x)gz{j S :U'|§|2a YIS ﬁa g S R"™

1,j=1
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con g > 1, dimostriamo l'esistenza di un semigruppo analitico e fortemente continuo
in L'(Q) che fornisce la soluzione di (5). Per il dominio D(A;) ricaviamo I'immersione
D(A;) — WH1(Q), da cui deriva la forte continuita del semigruppo in W11 per funzioni
ug € D(A1), cioé

lim [T (t)uo — uollw1.1(0) = 0

per ogni ug € D(A;), e questo fatto costituisce un risultato piu forte di quello cercato,
almeno per funzioni nel dominio.
La parte pilt importante del Capitolo 3 consiste nel provare delle stime sulla norma L'
del gradiente del semigruppo e sulle derivate seconde spaziali. La prima stima e
C

IDT(t)ullLr o) < %HUHU(Q) t>0,
che viene provata usando le stime sul risolvente R(\, A1) e la rappresentazione del semi-
gruppo in termini del risolvente. La stima provata sulle derivate seconde &

C
ID*T (t)ul| 1) < ?HUHLI(Q)a
che nel caso di un dato iniziale piu regolare diventa
| D*T(t)ull () < Cllullwray, te€(0,1), (7)

con d € (1/2,1). La stima (7) sara utile nel Capitolo 4 per stabilire un risultato di tipo
monotonia per la funzione

F(t) = /Q \DT(t)uo| da

In particolare nella Proposizione 4.3.3 ricaviamo la seguente disuguaglianza per funzioni
nel dominio di A;

/n|DT(t)v|Adx§/77|DU|Adx—|—C’t175||v||W1,1(Q) te€(0,1)
Q Q

dove |Duv|s denota la variazione totale di v pesata con la matrice dei coefficienti A
(per la definizione si veda la Sezione 4.2) e n & una qualsiasi funzione non negativa di
classe C}(Q). Tale risultato di monotonia e un risultato di approssimazione in variazione
per funzioni BV ci permetteranno di concludere e quindi di caratterizzare la variazione
totale di una funzione in L'(f2) in termini della norma L' del gradiente della soluzione
del problema (5): la relazione

IDuol() = Jimy [ 1D(7(e)u)] d (®)

¢ verificata per ogni ug € L*(£2). Pertanto ne segue che ug € BV (£2) se e solo se il limite
al secondo membro in (8) ¢ finito. In verita si riesce a provare una caratterizzazione
anche delle funzioni BV con peso continuo e limitato (vedi Teorema 4.3.4).

Nel Capitolo 4 illustriamo una seconda caratterizzazione delle funzioni BV. Tale
caratterizzazione & ottenuta utilizzando in modo differente il semigruppo (T'(¢))¢>0 ed
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il suo comportamento per ¢t — 0. Mediante le stime del nucleo p(¢,x,y) associato al
semigruppo (T'(t)):>0 e strumenti di teoria della misura si ottiene dapprima una completa
caratterizzazione per gli insiemi di perimetro finito in 2 e successivamente mediante la
formula di coarea si riesce a generalizzare i risultati di [33] ed a provare che una data
funzione u € L!(Q) ¢ a variazione limitata in ) se e solo se

1
liminf—/ p(t,z,y)|lu(z) —u(y)| de dy < oo
mipt - |t () ()

e in tal caso

VA
Dula() = Jim 3% [ [ plt.pfuta) = )|y,

Il Capitolo 1 e le Appendici A e B contribuiscono a rendere quanto piu possibile auto-
sufficiente questo lavoro di tesi. Infatti, nel primo capitolo richiamiamo le principali
definizioni e qualche risultato utile relativo alla teoria dei semigruppi ed alla teoria
della misura. I’Appendice A ¢ dedicata ad una breve introduzione riguardo la teoria
dell’interpolazione reale e complessa. In essa si raccolgono definizioni, qualche risultato
classico e un teorema di caratterizzazione per lo spazio di interpolazione reale

(LH(Q), W2HQ) N W, (D)o,

dove le,lj(Q) ¢ la chiusura di {u € C*(Q) | (A(z) - Vu,v(z)) = 0 per z € dQ}, rispetto
alla topologia di WH1(2). Questo ci permette di caratterizzare gli spazi intermedi
D4, (0,1). In verita, la trattazione poteva essere fatta in maggiore generalita, ma & stato
scelto un livello piu vicino ai casi concreti effettivamente utilizzati nella tesi. Nell'ultima
appendice raccogliamo stime Gaussiane dall’alto e dal basso per la soluzione fondamen-
tale dell’operatore 9; — A. Per dedurre le stime dal basso, trattiamo dapprima il caso
simmetrico e successivamente estendiamo le stime ottenute al caso non simmetrico, che
¢ quello di nostro interesse.






Introduction

Functions of bounded variation, usually denoted by BV, have had and have an impor-
tant role in several problems of calculus of variations. The main features that make BV
functions suitable for dealing with specific variational problems are their compactness
properties, in connection with integral functionals with linear growth on the gradient,
and their property of allowing for discontinuities along hypersurfaces, which is important
in several geometrical and physical problems. The prototype of integral functional with
linear growth on the gradient is the area functional, whereas, among variational problems
with discontinuities, maybe the first success of the theory has been the complete solution
of the isoperimetric problem in R™, and more recently free discontinuity problems (a
term introduced by E. De Giorgi in [17]) have been studied. These problems come from
image segmentation and smoothing and fracture mechanics, motivated by biology and
physics, where digital image processing and the study of elasticity properties of materials
are of relevant importance. Notice that Sobolev functions do not either share compact-
ness properties as general as BV, or allow for (n — 1)-dimensional discontinuity sets (like
boundaries).

BV functions have nowadays a satisfactory theory that regards their functional proper-
ties, including approximation, embedding theorems, smoothing, boundary trace theorems
and fine properties. For a systematic and self-contained treatment of the theory of func-
tions of bounded variation we consider as main reference the book of L. Ambrosio, N.
Fusco and D. Pallara [5]. Other references are the monographs of E. Giusti [23], U.
Massari and M. Miranda [32], L. C. Evans and R. F. Gariepy [20], and W. P. Ziemer
[49].

Given () an open subset of R”, functions with bounded variation in ) are defined as
those L'(f2) functions whose distributional derivative is representable by a finite R"-
valued Radon measure, denoted by Du, whose total variation defined as

DA =sup{ [ faivodo 9 e CHOR. [0l < 1) 1)

is finite. A particular case of interest is when f = xg, the characteristic function of
E c R". In this case, we set P(E,Q) = |Dxg|(2), and E is said to be a set of finite
perimeter in Q if P(E,Q) < oco.

The theory of BV functions is closely related to that of sets with finite perimeter. The
link is established by the coarea formula, that relates the variation measure of u and the



perimeter of its level sets:
Du() = [ PEL @
R

where Fy = {z € Q: u(z) > t}.

One of the starting points of this thesis is the paper [15], where De Giorgi defines for
the first time the perimeter of a set. At that time, it was more or less clear (see also
[10]) that a class of sets enjoying good geometric and variational properties would come
from an approximation procedure. De Giorgi’s idea was to start from a convolution with
real analytic kernels. With the aim of extending the isoperimetric inequality and the
Gauss-Green formula, for a given function f € L*°(R"™), he defines the approximating

functions as
_lz—y|?

WD) (@) = (amt) > [ gy dy
212
This choice of convolution kernel Gy (z) = (4mt)~"/ 2¢~ Y% has an advantage with respect
to the compactly supported mollifiers, i.e., the function W (t) f satisfies a semigroup law:

W(t+s)f(z) =W(E)W(s)f(x) t,s > 0.
In fact, the function u(t,z) = W (t) f(z) is the solution of the parabolic problem

{ Ow(t,z) = Aw(t,z)  t€(0,00), z€R" 3)
w(0,z) = f(x) rzeR" '

The heat semigroup (W (¢));>¢ is contractive on L!'(R"™) and commutes with the spatial
derivatives, so that

[DW (t+5) fll L1 @) =IDW ()W () fl 1. ey =W () DW (5) fll L1 gy SIDW (5) fll L1 o)

hence the function
t— |DW (t) f| dx
R'n,
is non increasing and the existence of the limit as ¢ — 0 is guaranteed.
In particular, given £ C R™, De Giorgi defines the perimeter of E through the limit

t—0

P(E) :=lim - |DW (t)x | dx. (4)

Now, since definition (4) makes sense also for functions in L*(R"), one could compute
the limit in the right hand side of (4) (with a generic f € L'(R™) in place of yx) and
prove that

DS = Jiy [ DW(o)f]da, @

i.e. that the limit in (5) coincides with the supremum in (1) for every f € L'(R").

The aim of this thesis is to investigate if the same result is true if |[Df] in (1) is replaced
by a more general weighted variation of f, and the heat semigroup (W (t));>0 in (5) is
replaced by the semigroup generated by a general elliptic operator of second order in an
open set {2 C R™, with suitable boundary conditions.



Let us briefly describe the problem considered.
Let Q be a (possibly unbounded) domain in R™ with uniformly C? boundary and let A
be a uniformly elliptic second order operator in divergence form:

A(x,D):zn:D (aij(x +Zb )D; + ¢(x). (6)

4,j=1

If Q # R™ we consider the (conormal) operator B acting on the boundary 9
B(x,D) = Y a;j(x)vi(z)D; = (AD,v), (7)
ij=1

where v is the outward unit normal to 092 and A = (a,;;). We consider the following
problem
Ow—Aw =0 in (0,00) x Q
w(0) = ug in ) (8)
Bw =0 in (0,00) x 0.

with initial datum ug € L'(£2). Let us briefly comment on the homogeneous boundary
condition (ADw,v) = 0. In the simplest case when A = A and ug = xg in (8), the
natural boundary condition to obtain P(E,2) as the limit as ¢ — 0 is the Neumann
condition 2 %, = 0, because in this way the function ug is not immediately modified near
the boundary, and then for short times the contribution of the gradient of the solution
is significant only in the interior of €2, thus measuring only the relative boundary of E.
The natural extension of %—f =0 in (0,00) x 0N when we consider a generic operator A
s (ADw,v) =0 in (0,00) x Of.

In order to study our problem, it has proved to be convenient to translate it in the
language of semigroups, and exploit the relative techniques. This leads us to consider
the realization A; : D(A;) C LY(Q) — L'(Q2) of A in L'(Q), where the domain D(A4;)
takes into account the boundary conditions. We shall prove that (41, D(A;)) is sectorial
in L1(2), hence it is the generator of an analytic semigroup (T'(t))s>o-

In order to prove that a linear operator A : D(A) C X — X is sectorial it is needed to
prove first of all that the resolvent set p(A) contains a sector

Yo={AeC: NAw,|arg(A—w)| <0},

with w € R and ¢ > 7; then, that there is M > 0 such that the resolvent operator of A,
R\ A) =(\—A)! Verlﬁes

IR\ A)|| < M/IA—w|  for A € 3. (9)

For the first requirement one has to prove existence and uniqueness of the solution of
elliptic boundary value problems in L!(2).

Basically, two ways are known to show the sectoriality of (A;, D(A1)). One is based on
the integral representation

(T(t) f) () = /Q p(t.2.9) () dy, (10)



and consists in proving the existence of the kernel p, and subsequently in deriving suitable
estimates on p and its derivative. Relying on earlier ideas of R. Beals and L. Hormander,
this point of view is deeply pursued by H. Tanabe in his book [45].

The other way is based on a duality argument. There is a serious obstruction in extending
to L1(Q) the LP-theory (1 < p < 00), because the classical Calderén-Zygmund and
Agmon-Douglis-Nirenberg estimates are known to fail for p = 1,00. A way to circumvent
this difficulty for p = oo has been devised by K. Masuda and H. B. Stewart (see [42], [43]
and also [31]) and consists in a clever passage to the limit as p — oo in the L? estimates.
Then, a duality argument can be used to pass from L™ estimates to L' estimates and the
sectoriality in L*(£2). This has been done in the case 2 bounded and Dirichlet boundary
conditions by G. Di Blasio [18], H. Amann [4], A. Pazy [35], and D. Guidetti [24] for the
case of elliptic systems in L. In the same vein, we have proved sectoriality of (A;, D(A;))
in L1(Q) for Q (possibly) unbounded and homogeneous co-normal boundary conditions.
After proving the existence and analyticity of the semigroup (T'(t)):>0, we need precise
estimates on the first and second order derivatives, in order to prove that the limit in (5)
exists, and to evaluate it.

Let us come to our standing hypotheses.
We suppose that the operator A has real valued coefficients satisfying the following
assumptions

aij = aj; € W»*(Q) and by, c € L®(Q).

and that the uniform ellipticity condition holds, namely there exists a positive constant
i > 1 such that for any z € Q and ¢ € R™

pUER <Y ai(@)&85 < plél
i,j=1

With these assumptions on the coefficients it turns out that (A, D(A4;)), where D(4;)
is the closure in the graph norm || - || 1) + [[A - |11 () of the space

{ue L'(Q)NC*Q); Au € L*(Q),Bu =0 in 09},

is a sectorial operator so it generates a bounded analytic semigroup T'(t) in L!, and
T'(t)ug is the solution of

Ow(t,x) = Aw(t, ) te (0,00), z€Q
w(0,z) = ug(z) x e (11)
Bw(t,z) =0 t € (0,00), x €N

By the density of D(A;) in L' and the fact that D(A;) — W11(Q) (see Remark 3.0.6)
we can also deduce that T'(t) is strongly continuous in D(A;) with respect to the Wh?
norm, and that

%141}% ||T(t)u0 — u0||W1,1(Q) =0 (12)

for every ug € D(A;). Formula (12) implies the convergence of || DT(t)ug||11 (o) to the
total variation of Dug as ¢t — 0.



But for general f € L!(Q) the existence of the limit in the right hand side of (5), with
T'(t) in place of W(t), relies on precise estimates on the first and second order derivatives
of T'(t)f. We prove that, for every ¢ > 0, the inequalities

C

DT (t)u| 11 () < %HUIILl(m

c
1D (Ol < Sl (13)

hold for every v € L(£2) and some constant C' > 0 independent of u. Estimate (13) has
to be improved to go ahead, and the improvement is obtained via a characterization of
the interpolation space between the domain D(A;) and L'(Q). As a consequence, we
prove that there exists § € (1/2,1) such that

| D*T(t)ull L) < Cllullwrig) t€(0,1) (14)

holds for every u € D(A;) and for some constant C' > 0. Estimate (14) will be very
useful to estimate the “defect of monotonicity” of the function

Ft) = / | DT (t)uo| dx. (15)
Q
Actually, we prove that for § € (1/2,1) as in (14) the inequality
/ n|DT(t)v|adz < / n|Dv|a dz + Ct 0 ||v|lwra (o te(0,1) (16)
Q Q

holds for v € D(A;) and for any nonnegative function n € C}(Q). In (16), |Dv|s
denotes the A-variation of Dv, namely the total variation weighted by the matrix of the
coefficients A = (a;;)i; defined as follows

|DulA(@) = sup { [ wdiveds s v € CHORM, A0 < 1} .
Q

Finally, using (16) and a result of approximation in variation for BV functions via func-
tions belonging to D(A;), we get that the total variation of wg is the limit as ¢ — 0 of
the L' norm of the gradient of T(t)ug, that is the following equality

IDul() = Jimy [ 1D(T(Ouo)| o ()

holds for every ug € L*(£2). As a consequence we get that ug € BV () if and only if the
above limit is finite. Let us point out that the previous characterization holds not only
for classical BV functions, but also for weighted BV functions (see Theorem 4.3.4).
The proof of estimate (14) for the derivatives is a quite long tour. Following ideas
introduced by V. Vespri in [47] and [48] for Dirichlet boundary conditions, we study the
semigroup (T'(¢)):>0 in Sobolev spaces of negative order and use a complex interpolation
result. We remark that in some intermediate steps (mainly, when we deal with the
adjoint operator of A) we need to assume higher regularity on the coefficients. However,
a perturbation result will allow us to come back to the initial assumptions.



We study also another connection between the short-time behavior of the semigroup
(T(t))t>0 in L*(Q2) and BV (). In fact, this leads to a second characterization for BV
functions. In this part, we use the integral representation (10) of the semigroup and the
relative estimates quoted at the beginning of this Introduction.

More precisely we extend the results in [33], where the authors prove that a given function
u € LY(R") is a function with bounded variation if and only if

1
liminf — - Gi(zx —y)drdy <
mint = [ Jua) ~ u(y) il — y) dedy < o0

and in that case its total variation can be written as

m - lu(x) — u(y)|Gi(e — y) dz dy. (18)

Dul(R™) =1
|Du|(R™) VT S

In order to extend (18) to functions with bounded variation in the domain €, we first
consider the special case of the characteristic functions and we characterize sets with
finite perimeter in 2. We prove that if £ C R" is such that either E or E° has finite
measure in 2, then E has finite perimeter in € if and only if

1
liminf—/ T(t z)dr < 400,
mint = [ TOxe()

and in this case the following equality holds

lim \[ [ rlws= [ 4o @), (19)

where FE is the reduced boundary of E (see Definition 4.5). We remark that the
right hand side of (19) reduces to the classical perimeter when A = I, since P(FE, ) =
H* Y FENQ). Then, using (19) in connection with the coarea formula (2), we prove
that a given function u € L*(Q) is of bounded variation if and only if

lim n % /Q /Q p(t,,y)|ule) — u(y)| dydz < oo

and its A-variation can be written as follows

Dula(@) = fig Y7 [ it )luto) - )] dud. (20)
Here, p is the kernel in (10).
Important tools for this second characterization are also the results of geometric measure
theory concerning the structure of sets of finite perimeter and in particular their blow-up
properties. We remark that this characterization is also in the spirit of [8], [14] and [27],
where only kernels depending on |z — y| are considered.

The two characterization of BV functions in terms of the short-time behavior of
semigroups, described below, have been published in [6]. However we point out that the
proofs in [6] rely on the kernel estimates recalled in Theorem B.1.1, whereas here we
use such estimates only in Chapter 5. In fact, in this thesis the construction and the



analysis of the semigroup (T'(t)):>0, as well as the characterization of BV in Chapter 4,
are independent of the kernel estimates and are rather based on the study of the resolvent
equation. In this respect, the estimates we get are self-contained, and, even though the
methods are based on previous works mainly confined to the Dirichlet problem, our
presentation as a whole is original.

Let us describe the contents of the thesis. We tried to be as self-contained as possible,
so we start in Chapter 1 by recalling some basic definitions and the most important
properties of semigroups and a few relevant notions of measure theory. Mainly following
[19] for the first part and [5] for the second one, we state (often without proof) some
classical theorems that will be used throughout the thesis and fix our notation. We
recall the main properties of sectorial operators and some perturbation results. Moreover
analytic semigroup and intermediate spaces are mentioned in the first part. The second
part consists in definitions and useful results of measure theory. Finally, Section 1.5
contains a collection of analytical tools helpful in the sequel.

Chapter 2 is devoted to results of generation of analytic semigroups in suitable Banach
spaces. Since we get generation in L'(£2) from analogous results in L by duality and
since the L* theory makes use of that in LP, 1 < p < oo, we start by recalling some
classical result of generation in LP spaces. Then, following [42] and [43], we deduce
generation for elliptic operator with non tangential boundary conditions in the space
of essentially bounded functions. Thus, using the adjoint boundary value problems in
L, we get existence and the estimate (9) for the solution of the elliptic boundary value
problem associated with A and B in L'. We also study elliptic boundary value problems
in the dual space of some Sobolev spaces to deduce by duality estimates for the gradient
of the resolvent operator R(A, A1).

In Chapter 3 we derive estimates for the L' norm of the semigroup T(t) generated
by (A1, D(A;1)). Other useful estimates are established for the first and the second
order spatial derivatives of T'(¢) also by mean of the characterization of some new real
interpolation spaces.

After a brief introduction on the possibly weighted BV functions and sets of weighted
finite perimeter we collect in Chapter 4 their main properties. In particular, a version
of the classical Anzellotti-Giaquinta approximation theorem is derived, and a weighted
version of the coarea formula is also shown. In the simplest case of the Laplacian defined
in a convex domain with homogeneous Neumann boundary condition on 952, the function
F in (15) can be easily proved to be non increasing by differentiating under the integral
sign. We remark that in such framework the convexity of the domain is essential: in fact
a counterexample to the monotonicity is provided in [22]. In general, when we consider a
generic operator like A, the same procedure does not work as well as in the previous case
as we do not get monotonicity. However estimate (16) and the approximation results
allow us to conclude, without convexity assumption on 2. The first part of Chapter 5 is
devoted to collect known results concerning some connections between semigroups and
perimeter. In particular we refer to [27], where Ledoux connects the L? norm of the heat
semigroup in R™ with the isoperimetric inequality, and to [33] for the characterization



of the perimeter of a set £ C R™ in terms of the behavior of

/ W (t)xe de
R"\E

as t — 0. Then we extend this latter result and we provide a second characterization for
sets of finite perimeter and functions with bounded variation in €.

At the end of the thesis there are two appendices. The first one consists in an elementary
treatment of the real and complex interpolation theory. Moreover a new characterization
of a real interpolation space is given. More precisely, we prove that if € (0,1/2) the
real interpolation space

(LMQ), W2 Q) N WL (Q)o.1,

where thlj(Q) is the closure of {u € C*(Q)|(A(x) - Du,v(z)) = 0 for z € 90} with
respect to the topology of W:1(Q), consists of functions that are in the fractional Sobolev
space W20:1(Q). This fact will be used in Chapter 3 to characterize the intermediate
space D4, (0,1). Finally a brief recall on the complex interpolation spaces is provided in
Section A.3. We present this argument in a quite general context, which still is not the
most general possible, but is close to our applications.

In Appendix B we gather up some Gaussian upper and lower bounds for the integral
kernel p in (10), (20). For the Gaussian lower bounds we study first the symmetric case
then, the estimates are extended to the non-symmetric one. More details about this
matter can be found in [34].

Lecce, 22 Maggio 2008
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Chapter 1

Preliminaries and auxiliary
results

In this chapter we collect some basic tools on the main topics used throughout the
thesis. We recall the basic definitions and the most important properties of semigroups
theory and measure theory. These recalls are only intended to fix some notations and
references and are confined to what will be useful in the sequel. For what concerns the
results on semigroups and sectorial operators we refer to [31], [19] while a more deep
analysis concerning results of measure theory can be found in [5] and [20].

1.1 Recall on semigroups theory

One of our aims is to prove existence, uniqueness and regularity properties for the
solution of the following parabolic second order problem

w(t, ) = Au(t,z) t>0,z€0
u(0,z) = f(z) x €
Bu(t,x) =0 t>0,z €00

where A is a linear second order operator in divergence form and B is a non-tangential
first order differential operator defined on 92, and the initial datum f is taken in L(£).
This problem is studied as an abstract Cauchy problem in a suitable Banach space,

{ u'(t) = Au(t), t>0

w(0) = 2 (1.1)

by looking at the semigroup generated by A with a suitable domain. Here X is a complex
Banach space with norm || - ||x, A : D(4) C X — X is a linear operator and = € X.
Of course the solution of (1.1) and its properties depend upon the class of operators
considered.

13
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In our case the operator A will be sectorial (see Definition 1.2.1 below). This ensures that
the solution of (1.1) admits an integral representation with a complex contour integral
and the solution map ¢ +— u(t, z) of (1.1) is given by an analytic semigroup (see Definition
1.2.2).

1.2 Sectorial operators

Definition 1.2.1. Let A : D(A) € X — X be a linear operator. We say that A is
sectorial if there exist w € R, 0 €]5, 7|, M > 0 such that

p(A) D85, ={AeC; N #w,|larg(A —w)| < 6} (1.2)

M
RN A)llex) < = VA€ Xy (1.3)

Here the resolvent set p(A) is the set {A\ € C: I(A—A)~ € L(X)} and for \ € p(A),
R(X, A) denotes the resolvent operator (A — A)~1.
A sectorial operator is immediately closed since its resolvent set is not empty, hence its
domain D(A), endowed with the graph norm |z|pa) = ||z||x + [[Az|x, is a Banach
space. Conditions (1.2) and (1.3) guarantee that the linear operator e!”, defined for
t > 0 as follows

1
=1, = AR\ A)dN,  t>0, (1.4)

27T7' W+'Yr,'r]

where r > 0, € (5,0), and
Yrp ={A € Cslarg Al =0, [A| > r}U{X € C;larg A| < n, [A| =7}
oriented counterclockwise, is well defined and independent of » > 0 and n € (F,6).

Before stating the basic properties of €', we recall when a family of operators
(T'(t))e>0 C L(X) is called a semigroup.

Definition 1.2.2. (Analytic semigroup) A family of operators (T (t))i>0 C L(X) is called
a semigroup if
T0)=1 and T(t+s)=TH)T(s) t,s>0.

1t is said to be strongly continuous if for each x € X the function t — T(t)x is continuous
in [0, 400[. Moreover it is called an analytic semigroup of angle 6 €]0, /2] if the function
z — T(z) is analytic in the sector s = {z € C: |argz| < §} and for every 0 < ¢’ < ¢
and x €Y, being Y a closed subspace of X, it holds that

lim T(2)z ==.
z—0
z € Xy

Proposition 1.2.3. Let A : D(A) € X — X be a sectorial operator, and (e!*);>o
defined as in (1.4). Then the following properties hold:
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(i) etdx € D(AF) for each t >0, x € X, k € N. Moreover if x € D(A¥) then

AFetdy = et Aky, >0, (1.5)

(ii) e(t+9)A = tdgsA t,s > 0;
(iii) there are constants M;, i =0, ..., k, such that
||etAH[;(X) < Mpe®t, t>0,
[t5(A — wI)ke! | x) < Mie*', t>0, (1.6)
where w is given in Definition 1.2.1

(iv) the function t — et4 belongs to C>((0,00); L(X)) and
dk tA k _tA
ﬁe = A%e’ 5 t> 0.

Moreover, it has an analytic extension in the sector

Yooz ={A€C: A#0,larg\| <0 — 7/2}.

These properties motivate the following definition.

Definition 1.2.4. Let A: D(A) C X — X be a sectorial operator. The family (e!4);>¢
defined by (1.4) is said to be the analytic semigroup generated by A in X.

Analogously one can prove that {e!4},>¢ is strongly continuous if and only if the

domain D(A) is dense in X, indeed lim; g e!4x = z if and only if z € D(A).

The following results solve the problem of identifying the generator of a given analytic
semigroup. In the next lemma an integral representation of the resolvent of A in terms of
the semigroup generated by A is given. The following proposition states that for a given
analytic semigroup {7'(t)};>0 there exists a sectorial operator A such that T'(t) = e!.

Lemma 1.2.5. Let A: D(A) C X — X be as in Definition 1.2.1. Then for every A € C
such that Re A > w we have

R(A,A):/ e Mt dt. (1.7)
0

Proposition 1.2.6. Let {T(t)}+>0 be a family of linear bounded operators such that
t — T(t) is differentiable with values in L(X) and verifies

(i) T(t)T(s) =T(t+ s) for every t,s > 0;

(i) | T(0)]lcx) < Moe", [t £ x) < Mye“* for some w € R, Mo, My >0

(iii) limy_o T(t)x =  for every x € X.
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Then t — T(t) is analytic in (0,00) with values in L(X), and there exists a unique
sectorial operator A : D(A) C X — X such that T(t) = e for everyt > 0.

Let us give a sufficient condition, seemingly weaker than (1.2)-(1.3), in order that a
linear operator be sectorial. It will be useful to prove that the realizations of some elliptic
partial differential operators are sectorial in the usual function spaces.

Proposition 1.2.7. Let A: D(A) C X — X be a linear operator such that p(A) contains
a half plane {\ € C; Re A > w}, and

[ARA, A)|lzx) <M, ReA>w, (1.8)

with w € R, M > 0. Then A is sectorial.

PROOF. By using the fact that if Ag € p(A) then the ball
Ve Ci A=l < IR0 Allk,)

is contained in p(A), we get that for every r > 0 the resolvent set of A contains the open
ball centered at w + ir with radius |w + i¢r|/M. The union of such balls contains the
sector S = {A #w: |arg (A —w)| < m — arctanM }. Moreover, for A € V = {A: Re ) <
w, larg (A —w)| < 7w — arctan(2M)}, A = w + ir — Or/M with 0 < 6 < 1/2, we can write

R(N\A) = i(—l)k()\ —w—ir)*RF Y (w 4 ir, A)

k=0
therefore -
= MFk+ 2M
R(MN A < A= (wir))f—m < T
1RO Al € 3= +inl ooy <5

On the other hand, since A = w + ir — 6r /M, the following estimate holds
r>(1/(4M?) +1)7 V2N — wl.

Finally
IR\, A)|2x) < 2M (1/(4M?) + 1)Y2 X —w| ™!

and the claim is proved. O

Thus in order to prove sectoriality for a given elliptic operator one needs to prove

(i) existence and uniqueness for the solution of a boundary value problem of the type
Au(z) — Au(x) = f(z) in Q,
{ Bu(z) = g(x) in 092,
at least for Re A large, and

(ii) the resolvent estimate (1.8).
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1.2.1 Perturbation of sectorial operators

When dealing with second order partial differential operators, it is often easier to
study operators with smooth coefficients or without lower order terms. Subsequently,
one can try to remove the smoothness assumption by using an approximation argument
and to add lower order terms with a perturbation argument. In this case it is important to
know that sectoriality is preserved and this can be guaranteed by an abstract perturbation
result. More specifically, let A : D(A) C X — X be a sectorial operator, generator of the
analytic semigroup (T'(t))¢>0, and consider another operator B : D(B) C X — X. The
perturbation theory gives conditions under which the sum A + B is a sectorial operators,
too, and therefore generates itself an analytic semigroup.

If B is “small” with respect to A, in a suitable sense, we say that the operator A is
perturbed by the operator B or that B is a perturbation of A. Before stating the main
result we need in the sequel, we observe that the sum A + B defined in the natural way

(A+ B)x := Az + Bx
and it is meaningful only for
x € D(A+ B) := D(A) N D(B),

a subspace that in general could reduce to {0}.

We start with a theorem of perturbation (whose proof can be found in [19]) where the
simplest case, that is the case in which the perturbing operator is bounded, is considered.
In this case, of course, D(B) = X.

Theorem 1.2.8. Let (A, D(A)) be the generator of a strongly continuous semigroup
(T'(t))t>0 on a Banach space X satisfying ||T(t)|| < Me“" for every t > 0, w € R and
M >1. If Be L(X), then

A+ B with D(A+ B):= D(A)
generates a strongly continuous semigroup (S(t))i>o satisfying
|S(t)]] < MeTMIBIDE ¢ > g,
Moreover if (T'(t))i>0 is analytic, then so is the semigroup (S(t))i>o0 generated by A+ B.
Whereas a bounded perturbation of an operator preserves its properties, the sum of
two unbounded operators raises more delicate questions since the domain D(A) N D(B)
can be too small and the good properties of single operators can be destroyed in the sum.

For this reason we need a definition for perturbing operators for which this situation is
avoided.

Definition 1.2.9. Let A: D(A) C X — X be a linear operator on the Banach space X .
An operator B : D(B) C X — X is called A-bounded if D(A) C D(B) and if there exist
constants a,b € RT such that

| Bz|| < af|Az|| + bl (1.9)
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for all x € D(A). The A-bound of B is

ag :=inf{a > 0 : there exists b € R such that (1.9) holds}.

Finally we prove a useful perturbation theorem that will be used later.

Theorem 1.2.10. Let A: D(A) C X — X be a sectorial operator and let B : D(B) C
X — X be a A-bounded operator with A-bound ag. Then there exists a constant o > 0
such that if ag < a, then A+ B : D(A) — X is sectorial.

PROOF. Let w € R be such that R(A, A) exists and [[AR(A, A)|| < M for Re X > w.
We write A\ — A — B = (I — BR(\, A))(A — A) and we observe that

bM 1
IBR(X, A)z|| < al| ARN, A)|| + BIR(N, A)l| < (a(M +1) + W)II@"H < 5 llll

if a(M +1) < 1/4 and bM/|\| < 1/4. Therefore, if a < o := (4(M + 1))~! and for Re A
sufficiently large, || BR(A, A)|| < 1/2 and

I = A= B)~!| < [ RO A)I(I = BR(\, 4)) 7| < 2&4

The statement now follows from Proposition 1.2.7. O

1.3 Analytic semigroups and spaces Dy(0,p)

In this section we present some results on the intermediate spaces D 4(6,p) coming
from a sectorial operator A. The classical results on interpolation between Banach spaces
are collected in Appendix A. The definition of the spaces D4(6,p) is due to H. Berens
and P. L. Butzer [9]. They can be defined in several different ways, one of them comes
out from the behavior of AT (t)x near ¢ = 0. We have seen in Proposition 1.2.3 that, for
each z € X, [[tAT(t)x| is bounded in (0,1), whereas, for every € D(A), || AT (t)z] is
bounded in (0,1). This behavior of AT'(t) leads to the definition of a class of intermediate
spaces between X and D(A). In this section we set 1/00 = 0.

Definition 1.3.1. Let 0 < <1, 1 <p < oo, and (0,p) = (1,00), we set
Da(0,p)={z e X: t |1 0"YPAT(t)z|| € LP(0,1)}

endowed with the norm
Izlpaco.p) = lZllx + [Z]D40.p)s

where [x]p,0,p) = 70" YPAT ()| 1o (0,1)- Define

Dy(0) ={x € Da(0,00) : tliirg)tlfaAT(t)x = 0}.
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Now, we state an important characterization of the space D 4(6,p) that will be used
in the sequel and whose proof can be found in [9, Theorem 3.4.2 and 3.5.3]. We denote
by (X,Y)g the real interpolation space between X and Y.

Theorem 1.3.2. Assume that (A, D(A)) generates an analytic semigroup on a Banach
space X. Then for 0 < 0 <1 and 1 < p < oo, and for (8,p) = (1,00) we have

Da(0,p) = (X, D(A))o,p

moreover, for 0 < 0 < 1,
Da(0) = (X, D(A))o

with equivalence of the respective norms.

The previous characterization provides several properties of these spaces deduced
from the similar ones of the real interpolation spaces (see Appendix A). Some of these
properties are recalled in the following corollary.

Corollary 1.3.3. (i) Suppose that A and B generate bounded analytic semigroups in
X. If D(A) = D(B) (with equivalence of the norms) then

Da(8,p) =Dg(0,p) and Ds(0) = Dg(h).

(i) The spaces Da(6,p) and D4(0) belong to the class Jp between X and D(A), i.e.,
there is a constant ¢ > 0 such that

Izl paop < clelx *lelipy Yo € D(A).

(11i) For 0 < 601 <03 < oo and 1 <p<oo and for (02,p) = (1,0), we have
Da(b2,p) C Da(61,p).

For0<0<1,1<p; <py<oo,

DA(I,OO) C DA(97p1) C DA(Q,pQ) C DA(Q) - DA(97OO) C (A)

Now we give an useful estimate for the function t — A*T(t) as t — 0% in the
intermediate spaces just introduced. In the next proposition we set D4(0,p) = X for
every p € [1,00].

Proposition 1.3.4. Let (a,p),(8,p) € (0,1) x [1,400] U{(1,00)}, and let k € N. Then
there exists C = C(k,p,a, 3) such that

[P AT @) || £(D A (0rp), DA (Bp)) < C 0<t<1 (1.10)

The statement holds also for k =0, provided a < f3.
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PRrROOF. Without loss of generality we can assume that A satisfies (1.2), (1.3) with
w = 0, otherwise we consider A —wI. By (1.6), we get that

Cr = sup [[tFAFT(t)|lzx) < oo forall ke N (1.11)
0<t<1
First we prove the estimate (1.10) for « = 0. Let x € X, k € NU{0}. Since D4(8,p) is
of class Jg between X and D(A), we get that
1—
12l pacap) < cllzlBallzlx” V2 e D(A).
Thus, using (1.11), we get
15 AR T (@l p gy < lltEAPT (W)l 0 AT (O] < et~ o]l x

for 0 < ¢ < 1, which is the claim for « = 0 and k¥ € N U {0}.
Now, let k € N, 0 < o« < 1 and let € D(a,p) or © € D4(1,00). Then, using (1.5), we
get
1" AMT ()| py .y = IEF AR T(8/2) AT (/2)2 ]| p s 8,p)
< 28| (/2)F AR TIT(t/2) ]| £ x D (a) | (E/2) AT (t/2) ]| x
< 2k+ﬁ_ata_60(k - 1;p7076)”xHDA(a,oo)-
Now, let k =0, a« < g and = € Ds(a,p). Then for 0 < s <1,

T2l DA =I5 PAT()T ()] Lo 0,1,) + IT ()] x
< Co(|ls' VP AT ()T ()| 1o 0,1:x) + 2]l x) = Colll| p.s o)

which allows us to deduce the claim for £ = 0 and o = 3. Finally, for 8 > «, we get

1
1T lpaan < ITWalouan + | [ ATGas],
t a(B,p)

1

< C(O7P7 0, ﬁ)HxHX + 0(17p7 O‘HB)H'I”DA(OL,OO) Sa_ﬁ_l ds

TS —

B+a
B—a
that complete the proof also for k = 0. O

< C(0,p,0,8)[lz]lx + C(L, p, o, B)|[#]| p s (a,00)

1.4 Preliminaries of measure theory

In this section we briefly review the basic definitions and the most important prop-
erties of measure theory. The main reference for our approach is [5] and other references
for related topics are [20], [21] and [37].

Let Q be an open subset of R™ and let B(f2) be the o-algebra of Borel subsets of ,
that is, the o- algebra generated by the open subsets of 2. We call the pair (Q,B(f2)) a
measure space.
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Definition 1.4.1. Let (Q,B(2)) be a measure space and let m € N, m > 1. We say
that p : B(2) — R™ is a measure if

pu(®) =0 (1.12)

and p is o- additive on B(R2), i.e., for any sequence Ey, of pairwise disjoint elements of

B(€)
p(UJ Bn) =D u(En). (1.13)
h=0 h=0

We denote by [M(Q)]™ the space of R™ -valued measures. If m > 1 we say that p1 is a
vector measure, whereas if m = 1 we say that p is a real measure.

Definition 1.4.2. (Positive measure) If p : B(Q2) — [0, 400] satisfies (1.12) and (1.13)
then p is called a positive measure or a Borel measure.

Notice that positive measures are not a particular case of real measures since real
measures must be finite according to the previous definition. In this latter case we say
that p is a finite measure if p(2) < co. A positive measure p such that p(2) =1 is also
called a probability measure.

For a real, vector or positive measure we can define its total variation measure.

Definition 1.4.3. We define the total variation of p the set function denoted by |p| :
B(2) — [0, +o0] such that for every A € B(2)

|| (A) == sup {Z l(An)| : An € B(Q) pairwise disjoint, A = U Ah} .
h=0 h=0

It can be shown that if y is a measure then |u| is a positive finite measure.

Definition 1.4.4. (Radon measure) If a Borel measure is finite on compact sets then it
is called positive Radon measure.

A Radon measure on ) is a real or vector valued set function p that is a measure
on (K,B(K)) for every compact set K C Q. It is called o finite Radon measure if
o B(Q) — R™ is a measure in the sense specified before.

If m > 1 and B € B(Q), then u(B) = (u1(B), ..., um(B)) and u; : B(Q) — R are
Radon measures.

Definition 1.4.5. (Support of a measure) Let u be a positive measure on ; we call
support of p the closed set of all points x € Q such that w(U) > 0 for every neighborhood
U of x and we denote it by supp u. If u is a real or vector measure, we call the support

of u the support of |p|.

For a positive, real or vector measure on the measure space (2, B(Q?)) and for E €
B(£?) we denote by ulL E the restriction of p to E so defined: uL E(F) = u(E N F) for
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every F' € B(Q); moreover, if u is a Borel (Radon) measure and E is a Borel set, then
the measure ulE is a Borel (Radon measure), too. When pul F = p we say that u is
concentrated on E. We say that a set E is u-negligible if there exists B D E, B € B(Q)
such that u(B) = 0. Moreover a Borel set E is called u-measurable if E is of the form
E UN with N p-negligible.

We now state the classical Riesz representation theorem. Recall that we denote by C.(2)
the space of continuous functions with compact support and by Co(£2) its completion with
respect the sup norm.

Theorem 1.4.6. (Riesz Representation Theorem) Let L : Co.(;R™) — R be a linear
functional. Suppose that there exists ¢ < +o0o such that for all f € C.(Q;R™)

IL(A)] < el fllzee -

Then, there is a unique R™- valued Radon measure  on ) such that
L(f) =/Qfdu=Z/thduh Vf € C(;R™).
h=1

Moreover

sup{L(f) : f € Cc(ER™), [[fllzee() <1} = [ul(2).

1.4.1 Weak convergence of measures

From the Riesz theorem, it follows that the space of [M(€)]™, endowed with the norm
Il == || (£2), is linearly isometric to the dual space of C.(2; R™) and so it is a Banach
space. This fact allows us to consider several topologies on [M(Q)]™. Of particular
interest are the following two different kinds of convergence induced by C.(2; R™) and
Co(2; R™), respectively.

Definition 1.4.7. Let ug, p be R™- valued Radon measures on (2.

*
Wioe

(i) We say that py converges locally weakly* to p and write pi, —= p if

/Qfduk—>/9fdu Vf e C.(Q;R™).

(i) We say that uy, converges weakly® to u and write uy 0, wif
[ fam— [ ran vreco@rn)
Q Q

An important connection between these two different kinds of convergence is given by
the following property. Let uz, u be R™- valued finite Radon measures. Then p, —

Wioe

if and only if pur —= p and the norms |uk|(2) are bounded.
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Definition 1.4.8. (Convergence in measure) We say that (Ey) converges to E in mea-
sure in Q if

QN (ELAE)| — 0 as h — oo.

We say that Ey, locally converges in measure to E if (Ey) converges to E in measure in
every open set A with A CC Q.

We can notice that these convergences correspond to L*(Q) and L] () convergences
of the characteristic functions.

1.4.2 Differentiation of measures

Two important relations between measures are presented in the following definition,
the absolute continuity and the mutually singularity.

Definition 1.4.9. (Absolute continuity and singularity) Let p be a positive measure and
o a real or a vector measure on the measure space (2, B(Q)); we say that o is absolutely
continuous with respect to p, and write o << p, if for A € B(Q), u(A) = 0 implies
o(A) = 0. If the measures p, o are both positive, we say that they are mutually singular
and write p Lo if there exists E € B(Q) such that p(E) =0 and o(Q2\ E) = 0.

This latter definition can be extended also to vector measures: in that case we say
that two vector measures p and o are mutually singular if |u| and |v| are so.

Theorem 1.4.10. (Besicovitch differentiation theorem) Let p be a positive Radon mea-
sure and o a real or vector valued measure both defined on the same open set Q) of R™.
Then, for u- a.e. x € Q) there exists the limit

o(By)
M (B, () D)

and it is equal to +oo for x ¢ supp p. The function D,o(z) € [L},.(S2 )]
Borel set B € B()

™ and for every

o(B) = /B Do (x) du(z) + o*(B), (1.14)

where 0° L p and is concentrated on a Borel set p-negligible.

By the representation (1.14) of o we can deduce that the integral part is absolutely
continuous with respect to u, and o° is singular.
This decomposition of o with respect to u is called Lebesgue decomposition and it is
uniquely determined. The function D,,0 is called the derivative of o respect to p and it
is usually denoted by o/u. The proof of the Besicovitch theorem, as is stated here, can
be found in [41].
An useful decomposition immediately follows from the Besicovitch theorem if we take
into account that each real or vector measure p is absolute continuous with respect to
its total variation |u|.
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Corollary 1.4.11. (Polar decomposition) Let u be a R™-valued measure on the measure
space (Q,B(Q)); then there exists a unique S™ *-valued function f € (LY (2, |u]))™ such

that = flpl.

1.4.3 Hausdorff measures and rectifiable sets

The notion that we are going to introduce is a mild regularity property of subsets
of R™ known as rectifiability. First we provide the definition of Hausdorff k-dimensional
measures. This class of measures is defined in terms of the diameters of suitable cov-
erings and allows an intrinsic definition of k-dimensional area without any reference to
parametrizations.

Definition 1.4.12. (Hausdorff measures) Let A C R", k € [0,00) and 6 € (0,00].
Define
Wi . . .
HE(A) = SEine { 3 [diam(A;)]F - A C | Ai, diam(4;) < 5} (1.15)
i€l iel
for finite or countable covering {A;}ic; (with diam( =0). Here

k/2

ERYCETP)

where T'(s) = [;° a*"e™* da is the Euler gamma function.
For A and k as above, define

HE(A) = (%Hﬁ;(A). (1.16)

Remark 1.4.13. We notice that the limit in (1.16) exists (finite or infinite) since § —
HE(A) is decreasing in (0,00]. It is also worth noticing that requiring § — 0 forces the
coverings to follow the local geometry of the set A.

Finally let us observe that H° corresponds to the counting measure and it is not trivial
to prove that H" = L™ on R".

Definition 1.4.14. (Countably H" -rectifiable sets) We say that E C R™ is countably
H"™~!-rectifiable if there exist (at most) countably many C* embedded hypersurfaces T'; C
R™ such that

H Y E\ T =0.

1.5 Some further preliminaries

In this section we collect some miscellaneous classical results, which is useful to state
in the form we shall use later.
Throughout this thesis, we shall consider functions defined in R™ or in subset of R",
particularly in R} = {z = (z1,...,2,) € R"; 2, > 0} and in domains with uniformly
C? boundary 0. Let © be an open set in R”, and m € N. Let us give the definition.
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Definition 1.5.1. (Uniformly C™ domain) We say that the boundary 0 is uniformly
C™ if there exist r,L > 0 and a (at most countable) collection of open balls U; = {z €
R™; |z — x| <r}, j € N, covering 02 and such that there exists an integer k with the
property that ﬂjeJ Uj = 0 for all J C N with more than k elements. Moreover there
exist coordinate transformations ¢; : U; — B(0,1), C™ diffeomorphisms such that

0;(T;NQ) = BT(0,1) = B(0,1) NR"

@j(ﬁjm Q) = B(0,1) N {z, = 0}.

Moreover, all the coordinate transformations ¢; and their inverses are supposed to have
uniformly bounded derivatives up to the order m,

sup > (ID%¢yllee + 1005 Hle) < L

IEN Jaj<m
We shall use the classical Sobolev embedding theorems which are recalled in the next
lemma. We refer to [1] for their proof.

Theorem 1.5.2. Let Q be either R™, or an open set in R™ with uniformly C* boundary.
Letp > n and set a =1— 3. Then WhP(Q) C C&(Q). Moreover, there exists C > 0

such that for every u € Wlif(Q) and for every xg € £ we have

(i) ull (e, ) < Cr™ 7 (Julleas, ) + 71 Dull e, )

(ii) [ulca(q,, ) < ClDullLra,,.,)-

lu(z) —u(y)]|
[z—yl> -

where Qg . = QN B(xg,r) and [u]ce ) = SUP, yeq

Another useful tool is a classical result of functional analysis known as continuity
method recalled in the next theorem.

Theorem 1.5.3. Let X,Y be Banach spaces, Ly and Ly be two linear and continuous
operators from X toY. We consider the family of operators

Li=(1—t)Lo +tLy, t €[0,1],
and we suppose that there exists a constant C > 0 such that
| Lix|ly > C|lz| x, x € X,tel0,1]. (1.17)

If Ly is surjective, then Ly is surjective too (hence bijective for the estimate (1.17)).

PRrROOF. Let V = {t € [0,1] : L; is bijective}. By hypothesis V # ) since 0 € V. If
to € V then Ly, is bijective and || L;.'|| < & by (1.17). Moreover, since

Ly = Ly, (I + (t —to)L;, (L1 — Lo))
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L, 15 invertible if and only if (I+ (t—to)Ly," (L1 — Lo)) is invertible. But, if [t — to| <
m then ||(t tO)L (Ll 7L0)|| <1 and Lt is invertible. Settlng 0= WC‘;‘”LO”)
we get that [0,6] C V. Analogous argument proves that [, 2] C V and so on.

Finally, after a finite number of steps we get that [0,1] C V. O

Finally, it is useful to recall two well-known inequalities due to G. H. Hardy [25]. For
the proof we use two lemmas. The first follows from the Holder inequality and its proof
can be found in [25, Theorem 191].

Lemma 1.5.4. Let 2 be an open set of R™, p > 1 andp’ = p/(p—1); then ||fHLp(Q) Co
if and only if || fgllL1 () < Cé/PCII/P/ for all g such that ||gHI£p,(Q) < (.

We shall deduce Theorem 1.5.6 from the following more general theorem whose
method of proof is due to Schur, even though in [38], it is assumed p = 2.

Lemma 1.5.5. Let p > 1 and p’ = p/(p — 1). Let K(x,y) be a non-negative and
homogeneous of degree —1 function, (i.e. K(Ax,\y) = A\~ K (x,vy)) such that

o0 oo ,
/ K(z, 1)z~ VP de = / K(1,y)y Y7 dy = k.
0 0

Then, for every non-negative functions f € LP(0,00) and g € L¥' (0,00) we get

/OOO /000 K(z,y)f(x)g(y) dzdy < k(/ooo P (x) dx)l/p(/ooo 7 (y) dy)l/p', (1.18)
/ dy( / K(x,y)f(x)dx) <’fp/ Pz (1.19)

/ da( / K (z,9)g(y) dy)” <kp’/0 9" (y) dy (1.20)
PROOF. We have
/ f(z dx/ K(z,y)g(y) dy = f dw/ooo:cK(:c 2w)g(zw) dw
- / f@yds | " K1, w)glaw)du

:/OOO K(1,w)dw/ooo f(z)g(zw) dx

if any of integrals are convergent. Applying Lemma 1.5.4 to the inner integral, and

observing that
/ 1 '
/9” (zw) dv = */9” (y) dy

we obtain (1.18). Finally (1.19) and (1.20) can be deduced by Lemma 1.5.4, indeed by
(1.18) we get that

1hg]l 1 (0,00) < (kpco)l/pql/p
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holds for all g € L¥(Q) where h(y) = / K(z,y)f(x)dz, Cy = / fP(x)dz and
0 0

C, = / g”/ (y) dy. Thus, Lemma 1.5.4 implies that
0

17l < kCo

P
Lr(0,00)
whence (1.19) is proved. The same argument can be used to prove (1.20). O

Now, an immediate application of Lemma 1.5.5 is obtained by specializing the choice
of K(x,y).

Theorem 1.5.6. (Hardy’s inequalities) Let o > 0, 1 < p < oo. If(s) is a non-negative
measurable function with respect to the measure ds/s on (0,00), then

([ By Ly [Teert}”
{ NG / T E)rantr < Ly / RO (1.22)

PROOF. Let a > 0, 1 < p < o0, then the function

ati-1,—a-1
K(s,t) — s Tr 7t P s<t
0 elsewhere

and

satisfies the assumption of Lemma 1.5.5 with k£ = é Then (1.21) can be obtained
by (1.19) with K(s,t) as before and f(s) = s~y s). Finally (1.22) can be proved
similarly choosing K and f in a suitable way. O

The next lemma is used only in Propositions 3.1.1 and 3.1.3. We omit the proof which
can be considered a particular case of [26, Lemma 7.1.1].

Lemma 1.5.7. (Gronwall’s generalized inequality) Suppose a,b > 0, 0 < a,f < 1,
0 < T <oo. Let u(t) be a nonnegative and locally integrable function on 0 <t < T with

u(t) <at™ + b/ot(t —5)Pu(s) ds

on (0,T); then there exists a constant C(b, 3,T) < co such that

at™®

u(t)gl—a

C(@,5.7).






Chapter 2

Generation of analytic
semigroups by elliptic
operators

2.1 Assumptions and formulation of the boundary
value problem
In this chapter Q will denote either R™ or an open subset of R" (n > 2) with suffi-
ciently smooth boundary 9. For any x € 99 we denote by v(z) the exterior unit normal
vector to 02 at x € 0.

We shall consider the linear second order differential operator A(z, D) with real coefli-
cients operating on complex valued functions u(x) defined in the domain 2

A(z,D) = > Di(a;(z)D;) + > _bi(z)D; + c(x)
ij=1 i=1
=div(A-D)+B-D+c. (2.1)

The leading part of A(x, D) is denoted by A%(z, D):

.AO(Jj, D) = Z (23] (J,‘)DZD7
i
In what follows we assume the following conditions.

SMOOTHNESS CONDITION ON §: §) is uniformly regular of class C?. (2.2)

SMOOTHNESS CONDITION ON A:

aij = aj; € Cy(Q) and  b;,c € Lo(Q). (2.3)

29
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ELLIPTICITY CONDITION ON 2: A is uniformly p-elliptic in €2, i.e., there exists a constant
i > 1 such that for any z € Q and ¢ € R™

p e < A%(x, ) < plel?, (2.4)

Moreover if @ # R", we consider some boundary conditions. These conditions are
expressed by a linear first order differential operator with real coefficients defined for
x € 0

We assume the following.
SMOOTHNESS CONDITION ON B:

Bi,y € UC (), (2.6)

i.e., 8,7 are differentiable on 02 and the derivatives are all bounded and uniformly
continuous on 92 and the uniform nontangentiality condition

Zﬁi(x)u T

inf

€052 (27)

holds.

In the sequel the Agmon-Douglis-Nirenberg a priori estimates will be very useful.
They hold for operators with complex valued coefficients for which (2.3) holds and uni-
form ellipticity consists in requiring that there exists a constant g > 1 such that for any
z€Nand £ €R"

PP < A% (2, 6)] < plel?, (2.8)

Due to the ellipticity of A, (2.8), we get that for every real vector £ = (£1,...,&,) #0
and for every point x € € there holds A°(z,£) # 0. Hence in particular for every linearly
independent real vectors ¢ and 7, the polynomial A°(xz, & + 7)) of the variable 7 has no
real roots. We assume the following.

ROOT CONDITION: For every pair of linearly independent real vectors £, n the polynomial
A®(x, & + 1) of the variable 7 has a unique root 7;~ with positive imaginary part.

It is easy to verify that if n > 3 all elliptic operators satisfy the Root Condition. Indeed
in the case £ 10, if we take for simplicity 7 = e,, then A°(x, &+ 1) = A°%(x, &', ) with
&= (&, &n—1), & # 0. We define the constant functions f,, g, : R"71\ {0} — N as
follows

) =#{reC: A%z, +7) =0, Im7 > 0}

g,(&)=#{reC: A%z, &+ ) =0), ImT < 0},

and we observe that since if 7 is a root for &, 7 then —7 is a root for —§, —n we deduce
(&) = gny(=¢). Moreover, if n > 3 then g,(—¢') = g,(¢'). In fact, the points ¢ and
—¢&' can be joined by a smooth simple curve v in R"~1\ {0} (which is a connected set)
and the roots of the polynomial 7 +— A%(z,~() +7n) are continuous functions along ~. If
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gn were not constant along v, the imaginary part of some roots would change sign, hence
it would vanish and give a real root, which is impossible. Therefore, f,(¢’), ¢,(¢') and
gn(—&') coincide everywhere on R"~1\ {0} if n > 3. The general case can be recovered
by the previous one. Indeed let £, € R™\ {0} with £ and 7 linearly independent; we can
write £ = & + &7 with 7 = #, ¢ #0and ¢ L1, then A°(€ + 1) = A°(& + 7'1)) with
7' =¢&" 4+ 7|n| and ¢ L 7. Finally we observe that f,(¢') = f3(¢') and g,(¢') = g4(¢');
thus repeating the argument above we conclude for two arbitrary linearly independent
vectors &, 7.

Moreover, we require that the boundary conditions are expressed as before by (2.5) with
complex coefficients

8,7 € UG, ((;C) (2.9)

that must “complement” the differential equation. This condition called complementing
boundary condition consists of an algebraic criterion involving the leading parts of A and

B.

COMPLEMENTING CONDITION (2.10)

Let z be an arbitrary point on 02 and v be the outward normal unit vector to 0S2 at x. For
each vector ¢ # 0 tangential to 90 at z, let 7, be the root of the polynomial A°(z, £ +7v)
with positive imaginary part. Then the polynomial B%(z, & + 7v) = (8(z),€ + Tv) has
to be linearly independent modulo the polynomial (7 — 7'1+ ). This means that 7'1+ cannot
be solution of B°(¢ + 7v) = 0 and it is obviously satisfied if (2.7) holds.

We notice that if the coefficients of A are real and satisfy
Y ai(@)& > pls? zeQ, EeRT
4,J

for some p > 0, then the Root Condition is immediately satisfied. Indeed in that case the
polynomial in 7, A%(€ 4+ 7v) has not real roots, therefore it has two conjugate complex
solutions.

Remark 2.1.1. The reason why we have considered complex valued coefficients and
introduced assumption (2.8) is the fact that we shall use the Agmon-Douglis-Nirenberg
estimates (2.13) and (2.14) with A replaced by the operator A+ ¢ D;; in n+ 1 variables
(x,t), with § € [—m/2,7/2], which satisfies (2.8) and the Root Condition too.

2.2 Basic estimates for elliptic equations

The aim of this chapter is to prove that under the assumptions listed in Section 2.1,
the realizations of A with homogeneous boundary conditions Bu = 0 in 052, are sectorial
operators in suitable Banach spaces. As a result they generate analytic semigroups in
those spaces (see Proposition 1.2.3).
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A sufficient condition for the sectoriality of an operator is given in Proposition 1.2.7.
Here we first need some existence and uniqueness results for elliptic boundary value
problems of the type

Au— A(-, D)u = in Q
u—AC,Dju=f in (2.11)
B(-,D)u=0 in 0Q

and then some resolvent estimate like (1.8).

Now we recall the a priori estimates due to Agmon, Douglis and Nirenberg that hold for
operators with complex coefficients satisfying hypothesis of Section 2.1 in R™ as well as
in regular domains. For a complete analysis of these estimates we refer to [2] and [3].
We recall them in the following theorem in a way that will be used later. We set

M = max{{|ai; 1,00, [[billoos [lfl oo }- (2.12)

Theorem 2.2.1. (Agmon-Douglis-Nirenberg)

(i) Let A(z, D) be defined as in (2.1). Suppose that a;;,b;,c: R" — C satisfy hypothe-
ses (2.3), (2.8) and the Root Condition. Then for every p € (1,+00) there exists

a strictly positive constant C depending only on p,n,u and M such that for every
u € W2P(RM)

lullw2r@e) < C ([JullLe@ny + [AC D)ullLe@ny) - (2.13)

(ii) Let Q be an open set in R™ with uniformly C? boundary, and A(z,D) defined by
(2.1). Suppose that a;;,b;,c : Q — C satisfy hypotheses (2.3), (2.8) and the Root
Condition. Let in addition B;,~ satisfy (2.9) and the complementing condition. For
every u € W2P(Q), with 1 < p < oo, set f = A(-,D)u, g = B(-, D)ujpq. Then
there is C1 = C1(p,n, u, M, Q) > 0 such that

lullwzr@) < C1 (lulle@) + 1 f e + lgrllwre@)) - (2.14)

where g1 is any WP extension of g to ).

Observe that the estimates in Theorem 2.2.1 are not true for p = 1 and p = oo. For
this reason the theory of LP(2), 1 < p < oo cannot be rearranged to the cases L' or L°°.
For p = oo this difficulty has been overcome by K. Masuda and H.B. Stewart (see [42],
[43]) using the classical L? theory and by passing to the limit in the L? estimates in a
suitable way.

One of the ways to solve the case p = 1 consists in using duality from L.

This chapter is organized as follows: in Section 2.2.1 we discuss the generation in LP,
1 < p < oo for an elliptic operator of second order with homogeneous non tangential
boundary conditions. Using these results we study the same problem in L*°(£2). Finally
in Section 2.5 we confine our attention to a particular boundary operator and we prove
sectoriality for the realization in L! of the operator A with the homogeneous boundary
condition there specified.
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2.2.1 Analytic semigroups in L?(R"), 1 <p < o0

First suppose 2 = R"™ and consider the realization of A in LP(R™). Define
D(A,) = W*P(R™), Apu=A(-,D)u, u€ D(A,), (2.15)

We start by the simplest case when a;; = d;; b;,c¢ = 0. In this way the operator in (2.1)
reduces to the Laplace operator:
n
A=) "Dj.
i=1

By (i) of the Theorem 2.2.1, it follows that the operator A with domain W?2?(R") is
closed.

Theorem 2.2.2. Let 1 < p < oo and consider the operator A with domain given by
W2P(R™). Then, there exist 53 < 99 < m and My > 0 depending on p such that
p(A) DXy ={N e C; A#£0, |arg \| < ¥} and the estimate
My

”(/\ - A)71||£1(LP(R”)) < W

(2.16)
holds for A € ¥y for any 9 < ¥q.

PROOF. First we consider the case p > 2. For u € C°(R"), we put u* := itu[P~2
where @ denotes the complex conjugate of u. Since the function f(z) = Z|z|P~* is
continuously differentiable, u* € C}(R™). By the chain rule we obtain

Dypu* = |uP72Dpa + (p — 2)|ulP~*aRe (aDyu).

Integration by parts yields

- Au-u* = —/ Z(thU)ﬂ\u|p_2
" h=1

Rn
_ / S Dyuby(ajufr~?)
R™ 1

:/ S (jufP~2 DyuDy
" h

=1
+ (p — 2)|[u|P~*aDyuRe (wDpu)).

Since
Re (Jul*DpuDpi) = (Re (@Dpu))? + (Im (@Dpu))?,
then

—Re Au-u* = (p— 1)/ |ulP~* Z(Re (@Dpu))?
R" R" P

+/ P~ Im (@Dpu))? =: (p— DA+ B> >0 (2.17)
Rn h=1
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and

—Im Au-u*=(p—2) / |ufP~4 Z Im (aDpu)Re (aDpu).
R" R» h=1

Now, using the Cauchy- Schwartz inequality we obtain

n

/ ) |u|p—4’ Z Im (2Dpu)Re (ﬂDhu)‘ <

h=1
/ |u|p%4
Rn

(/Rn|up_4};(Re (11Dhu)2)§ (/Rn \u|”_4h§1(lm (ﬁDhu)2)§ = AB

Re (aDu))‘ |22

Im (ﬂDu))’ <

and so
‘Im Au-u*| < |p—2|AB. (2.18)
Rn

If 1 < p <2, we get the same estimates (2.17) and (2.18) by approximation, using the
functions u* = a(|ul?> + 6)*= and letting § — 0.
Now we look for the smallest positive v such that

Ip = 2|AB < [(p — 1)A* + B]
for all A, B. Since for such 7y we have that

A? A
70(p_1)ﬁ_|p_2|§+70 >0

for all A, B, then (p —2)% —4(p — 1)7¢ < 0 and so

o> P =2
O=o/p—1

Setting Au - u” dx =: x + iy, we have obtained
R’Vl
<
{ z<0 (2.19)
ly| < 7]zl

for v > v9(p). Define ¥y = m — arctan g, ¢ < ¥ and prove that p(A) D Xy.
Let ¥ < ¥ and consider A € ¥y and u € C§°(R"™), with |lu|z»@w») = 1, so that
[ull Lo (mny =1 = (u,u*) pp - Then, by (2.19) we get (Au,u*);, 1, € C\ Ey,, hence

[Au — Aullprrny > [(Au — Au,u™) 1y 1| = [A = (Au,u™) pp o]
> dist(\, C\ Zg,) > Cgl|A|.

By density, we deduce

[Au — AuflLerny = ColAll|ull Lo ®e) (2:20)
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for all u € W2P(R"). Now, using the Fourier transform we prove that A\ € p(A). The
injectivity of A — A follows from (2.20). By (2.13) and using inequality (2.20) we have

[ullwzr@mn) < cl[ullLe@ny + [[AullLorn))

< c(lull Lrmny + M wll e @ny + | A — Aul| o (gn))

= c((1+ [AD|ull e @) + | Au — Aul| Lo (rn))
where the constant C' depends on p, ¥, A. Now, inequality (2.21) and the closedness of A
in W2P(R") imply that (A — A)(W?2P(R")) is closed in LP(R"). We have only to prove
that (A — A)(W?2P(R"™)) is dense in LP(R™).
Consider the space S(R™) which is dense in LP(R™) and prove that

VfeSMRY Jue WHP(R™) such that (A — A)u = f

Now, the solution in W2P(R") of Au — Au = f is the function u € S(R™) whose Fourier
transform is

~

f
A g

ﬂ, =
This shows that
(A= A)(W>P(R")) 2 S(R")
hence it is dense in LP(R"™). O

The previous theorem implies that the realization of A in LP(R™) is a sectorial oper-
ator.

Corollary 2.2.3. Let 1 < p < oo and X\ € C with Re A > 0. Then for every f € LP(R™)
there exists a unique u € W2P(R™) such that

(A= A= f. (2.22)
Moreover
1
IAl[[ull Lo gy + A2 |1 Dull Loy + 1D ul| o ey < || £l Lo rny (2.23)

where ¢ depends on n,p.

PROOF. The result can be easily obtained from the previous one. By the estimate
(2.20) and (2.21) we deduce

IAllullze@ny < Cq I f e mn) (2.24)
I1D*ul Lo rny < C|IF Lo rn) (2.25)
and finally using the interpolation estimate (A.1)
v < o| D)2 2 <OV 2.26
IVl ey < ND%ull by g il oy < O 20 ooy (2:26)
Summing up (2.24),(2.26), (2.25) and redefining the constant we get the claim. O

Actually for what concerns the existence and the uniqueness of the solution of (2.22) in
R™ we state the following theorem (see for example [44] for details).
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Theorem 2.2.4. Let f € LP(R™), then for every X ¢ (—00,0] there exists u € W2P(R")
such that Mu — Au = f and the estimate

HUHWZP(Rn) S C(n, )\) ||fHLp(Rn)

holds.

In the following proposition we extend (2.23) to a more general operator than the Lapla-
cian.

Proposition 2.2.5. Let 1 < p < oco. Then, there exist wg € R, M, > 0 depending on
n,p, p, M such that if Re X > wy, then for every u € WP(R") we have

1
Ml e ey + X2 1Dl oy + 1D*ull Lo (o) < MyllAu— AC, D)ullpogny  (2:27)

PROOF. Let £ the operator in n + 1 variables defined by
E(x,t,D) = A(z, D) + ¢ Dy, (2.28)

with 6 € [—7/2,7/2]. Tt satisfies the uniform ellipticity condition (2.8) with constant
pe = /2. Indeed, it is obvious that |A%(z, &) 4+ e*n?| < u(|€)? +n?) < uv2(|€] + n?);
for the converse inequality, we look for ug > 1 such that

(A% (2, &) + 0P| = pg ' (1€ +n?) (2.29)
for all z € Q, (&¢,17) € R"® x R and for every 6 € [—7/2,7/2]. We observe that

A (2, €) + %] = [((AE, &) +1° cos )2 + n* sin® 6]

[((A&, €))% +n* + 2072 (AL, &) cos 6] /°

1
> (?|f|4 + )2

Since we look for a pg such that (2.29) holds, if
1 _
(Elﬁ\4 +0)Y2 = gt (€ P

or equivalently using that 2|¢[2n? < |¢* + n*

2 (el + ) < — el + o (2.30)

11z I

holds for all (§,17) € R™ x R we conclude. Now, it is easy to see that if pg satisfies

2 1y
pg o op? T
2

S —1<0

Mg
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that is if pe > pv/2, then (2.30) is proved.
Let n € C°(R) be such that n = 1 in [f%,%] and suppn C [-1,1]. For every u €
W2P(R™) and r > 0 we set

v(t,z) = n(t)e u(z) teR,zcR" (2.31)
Then
Ev=nt)e (A - e¥r?)u+ O (1 4 2iry )u.
Now, we can prove (2.27). Estimate (2.13), applied to the function v implies that there

exists C' = C(n,p, u, M) such that

[vllw2p a1y < C [[[0]l Lot + [E0]| Lo a1y
< Cllull e
+ ne (A= €r?yu+ e (" + 2irn )ul| Lo g
< C [llullzr @y + 1A = 7))l Loy + (1 + 27)[|ull o)
<O [+ ) |ullrr@ny + (A= ePr?)ull Lo @ny] - (2.32)

On the other hand, since n =1 in [—3, 1], then

[l gerrsy 203,40 / [ 3 i ute)lPdsd: -

|| <2

:/ [(1+rp+r2p)|u\P+(1+2rp)z\pju|u S Dyl da

j=1 7,k=1
> TQPHu”]zp(Rn) + rp”Du”Zzp(Rn) + ”DzUHip(Rn)- (2.33)

Taking into account (2.32), it follows

7“2||UHLP(R") + THDUHLP(R") + ||D2u||LP(R")
< 3l[vllwep@nery < 3C [(1+7)uflLo@n) + [I(A = r?)ul| o @m)] (2.34)

where C is like in (2.32). We can select r sufficiently large such that r? —3C(1+r) >
we get

L
2

1 3
57 lullzen) + 7l Dull e ey + [ D*ull Loy < CIIA = €r*)ullpomn) (235

Taking A = e¥r? we get (2.27) with M, = 6C. O

Now, by using the continuity method (see Theorem 1.5.3) we are able to prove exis-
tence and uniqueness for the solution of

M — Au = f € LP(R")

for A € C with Re A large enough.
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Theorem 2.2.6. Let 1 < p < co. There exist ©g € R, C > 0 depending on n,p, u, M
such that if Re A > &g, then for every f € LP(R™)
Au—Au=f

has a unique solution u € W2P(R™) and the following estimates hold

_ C
[(A—A4p) 1||£(LP(R")) < W; (2.36)
1 C
IV = A4p)  ler@mny) < N ; (2.37)
ID*(A = Ap) Hlewr@ey) < C. (2.38)

ProOF. We consider the Banach spaces
X =W?**R"), Y =ILPR")
and the operators
Lo=XA—A, Li=X—-A, Li=Xx—A :=X—[(1-t)A+tA].

We can observe that A; satisfies (2.4) with p; > p and the constant in (2.12) for A,

My <(1vM).

Moreover, by Corollary 2.2.3 we know that the operator L is invertible for Re A > 0,

and by the Proposition 2.2.5 applied to the operator A; := (1 — t)A 4+ t.A we get that

there exist wg € R and M,, depending only on n, p, i1, M, X such that for every Re A > wq

and ¢ € [0,1],

[ullwzr@ny < Mpl|(A = A)ull Lo mn).-

Since the hypotheses of Theorem 1.5.3 are satisfied we get the invertibility of the operator

L; =X — Afor ReX > @y := sup{wy, 0}.

The estimates (2.36), (2.37) and (2.38), are immediate consequences of Proposition 2.2.5.
O

In view of Theorem 2.2.6 and Proposition 1.2.7 we have shown that the operator A,
defined in (2.15) is sectorial.

2.2.2 [P-estimates on domains

In this section §2 will be either a smooth open subset of R" or the half space R’f. We
suppose that A, B satisfy assumption of Section 2.1. In this case we define

D(AD) ={u € W*?(Q); B(-, D)u = 0 in 99},
ADu = A(-, D)u, u € D(AD). (2.39)
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AB is the realization in LP(€2) of A(-, D) with homogeneous oblique boundary condition.
In order to prove that Af is sectorial we prove that its resolvent set contains a complex
half plane and the resolvent estimate (1.3) holds.

Here also we start with the simplest case of the Laplacian in the half space R. The
crucial points are

(i) to show an a-priori estimate for Af,

(ii) to solve the Neumann problem in R}.

By means of the continuity method we deduce existence and uniqueness in R’} for the
problem related to A with a boundary operator like B. Finally, using the regularity of
the boundary 92, we deduce an analogous result in the domain €.

We need to prove an estimate like (2.27) for the resolvent of the operator Af as next
proposition states.

Proposition 2.2.7. Let Q) be an open set with uniformly C? boundary. Then there exist
w1 € R, M, > 0, depending on n,p, u, M,§), such that if ReX > wy, then for every
u € W2P(Q) we have, setting g = B(-, D)ujsq,
1
Ml o) + A [|Dul| Lo o) + 1 D?ul| ooy <
My Au— A(, D)l ooy + A2 llg1 1l ) + 1 Dgi || e o) (2.40)

where gy is any extension of g belonging to W1P(Q).

PRrROOF. The proof of this result can be obtained as in Proposition 2.2.5, using now
estimate (2.14) instead of (2.13) in  x R. Let g; be any regular extension to £ of the
trace (B(-, D)u)pn. Then (2.32) has to be replaced by

[vllw=r@xry < C1 ([0l Lr@xr) + 1€0]| Lo@xry + 1€ gillwir@xwr))
< O((r+ Dlul Loy + 1A = e“r)ul oo
+ (r+ Dllgrll e @) + [1Pg1] e () (2.41)
where C' = C(n,p, u, M). Accordingly, (2.34) has to be replaced by

7 |lull oy + 7| Dull o) + 1D*ul| Lo (o)
< 3[|vllwerxr) < 3C[(L+7)|lull o) + I1(A — €r2)ul| o (q)
+ (r+ Dllg1llce @) + 1Dg1llLe ()] (2.42)

As before taking A = €r? with r sufficiently large such that 3C(1 + r) < % we get

(2.40). O

Proposition 2.2.8. Let 1 < p < co. Then there exists wo € R depending on n,p, such
that if ReA > wy and f € LP(RY) the problem

Au—Au=f in R
ou ) n (2.43)
87% =0 m 8R+
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has a unique solution u € W*P(R'}). Moreover there exists a constant c¢(\) = c(n,p, A)
such that

lallwesgmg) < cOVFllome)- (2.44)

PROOF. Uniqueness and (2.44) are consequences of Proposition 2.2.7. Concerning
the existence, we consider the even extension of f with respect to the last variable

f@ x,) = {f(m 'Tn)  Tn 20

f@', —x,) 2, <0

By Theorem 2.2.2, for Re A > 0 there exists a unique solution @ € W2P(R") such that
M\i — A = f. Now, it is easy to verify that the function wu(z’, z,) := @(a’, —x,) solves
the elliptic problem Au — Au = f in R™, and, by uniqueness, u = u, that is, u is even in
Z, and so %(x’, 0) = 0. Therefore for Re A > sup{w;, 0} =: wo, the restriction of @ in
R’ is the unique solution of (2.43).

O

The following theorem extends results of existence and uniqueness of problem (2.43) to
a problem where A replaces the Laplacian and more general oblique boundary conditions
are considered.

Theorem 2.2.9. Let 1 < p < oo. We assume that i,y € UCL(RY) and that the
uniform non tangentiality condition

dnL, 6(). )] > 0 (2.45)

holds. Then there exists w3 € R depending on n,p,p such that for every f € LP(RY)
and Re A\ > w3 the problem

A — Au = f in R}

Ju . n (2.46)
5‘75 +yu=0 in ORT}

has a unique solution u € W*P(R".).
Proor. We set
X =W?*P(R}) Y =LP(R}) x WHP(R™1)

and consider the operators Ly : X — Y so defined

Lgu = ()\u —[(1—s)Au+ sAu], (1 — 5)% + s(yu + g—g)), s €[0,1],
where v is the exterior unit normal vector to the domain, that is v = —e,,. We notice
that
(1 )au . ou Ou
ov op  or
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with 7 = (1—s)v+s0 satisfies (2.45) independently of s. Moreover A; = (1—s)Au+sAu
satisfies (2.4) with ps > p and M, < (1V M), therefore we can ignore the dependence of
those constants by s. Hence in (2.40) the constant M), can be chosen independently by
s and the estimate

ILeully > My ullx

holds for every s € [0,1]. By Proposition 2.2.8, L is surjective, therefore by Theorem
1.5.3, L, is surjective too. O

The hypothesis of smoothness of the domain suggests to go back by means of local
charts to balls or half balls of R™ and to apply the results obtained before in order to
get the same result in 2 as the next theorem states.

Theorem 2.2.10. Let Q, A and B be as in (2.1)-(2.7). Then there exists wy depending
on n,p, i, such that if Re A > wy and f € LP(Q), the problem

{ Au—A(,D)u = f in Q (2.47)

B(-,D)u=0 in 09

has a unique solution u € W2P(Q). Moreover there exists C' = C(n,p, pu, M, ) > 0 such
that
1
Mllullze) + A2 [1Dull o) + [D?ull o) < CllfllLe)- (2.48)

PROOF. Observe that if we prove the existence of a solution of (2.47) then uniqueness
and estimate (2.48) follow immediately from Proposition 2.2.7. Indeed the estimate

IMullzr ) < Mil|Au — Aull Ly ()

yields the injectivity of A — Af . Thus, we have only to prove the surjectivity of the
operator A\ — Af.

By the regularity of the boundary 99 we can consider a partition of unity {(n?,Us)}nen
such that suppn, C Up, Y peoni(z) =1 forevery 2 € Q,0 < np, < 1and ||nsllwe= < ¢y
for every h € N. Moreover let (Up)nen be such that Uy CC Q, Uy, for h > 1 is a ball
such that {Up}r>1 is a covering of 990 and {Uj}ren is a covering of € with bounded
overlapping, that is, there is kK > 0 such that

> xv.(2) <k, VreQ (2.49)
heN

Moreover there exist coordinate transformations ¢y, : Uy, — B(0, 1), C? diffeomorphisms,
such that
en(UnNQ) =B7(0,1)
on (U, N 0Q) = B(0,1) N {x,, = 0}.
Moreover, all the coordinate transformations ¢y and their inverses are supposed to have
uniformly bounded derivatives up to the second order,

sup Y (ID%nllse + D%, o) < € (2.50)

1<]al<2
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Let f € LP(); then we can write f = Y 7o n7f. We notice that nof € LP(R"),
supp (nof) € Up. Thus if we extend a;;,b; and ¢ to the whole space R™ in such a way
that their qualitative properties are preserved, to the extension A we can apply the
Theorem 2.2.6. Hence there exists @y € R such that for Re A > &g the operator \ — Ais
invertible in LP(R™). Therefore if R(\) : LP(R™) — W?2P(R") denotes the resolvent of
the operator A, in R", we can define

Ro(A)f = noR(A)(no.f)-
Then supp Ro(\)f C Uy and Ro(\) : LP(2) — W2P(Q2) and
(A= ARNF = (A= AR )
= oA = AR () + (A= Aol +n0(A = A)) (R(A) (1m0 f))
= 0o f + A= AnolR(N)(nof)
where [X,Y] = XY — Y X is the commutator of X and Y. Letting
Sno(A) := [A = A, noIJR(X)no

we can write
A=A RN f =5 f + Spe(N) -
It is immediate to verify that [\ — A, nol]g = —[A,nol]g. Moreover

N n
—[A,noTlg = =2 > ankDunoDig — g( Y (Di(ai;Dyno) + bi Dino)
ho=1 ij=1

If we define By = [A — A, nol], we observe that By is at most a first order differential
operator whose coefficients depend on those of A and the function n9. We have

1BogllLr(2) < C(M, cy)llgllwrr ) (2.51)
Hence, using (2.51) and estimates (2.36), (2.37), we get
180 (M) fll ey = 1Bo(A = A) (0 f)| o (o)
< C(M, c)[(X = A) " (o f)llwre e

C
< W””Of”LP(Q) (2.52)

where C' = C(n,p, u, M, c,;,2) e Re X > @g. So for S, () we get the following estimate
1m0 (Ml 2(zr(ey) < CIAITV2.
Now, we consider the case h > 1. Let

un(y) = () (5, (v) = Tu(mnf)(y)

then v, € W?2P (R%). We denote by Ay, the operator in Rl determined by the change
of variables given by ¢,

Apw := div(A, Dw) + (B, Dw) + éw (2.53)
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defined by the coefficients (here for A and its coefficients we omit the index h to simplify
the notations)

An(y) =(Den) (95" () - A ) (Den) (1" )
(Bu(y)r =Tr [ (Den) (2 (y > < <y>> leh( ) (Do) )]
+Tr[(Dsoh)( ](Dsoh W) - 8(; [%z(y)]

+ [(Dsoh)(wﬁl(y)) - Blgr" ()
én(y) =cley ' (1))

l

where HL, = D?,(¢n); and G, = Dyaqij (5, (y)). We remark that A(n,u)(z) = Anva(y).
For what concerns the boundary condition we get
B(nnu)(x) = B(z) - D(nnu)(x) +~(2)(mnu)(z)
= [(Den) (6 1)) - Bl ()| (Dun) () - Dlmu)(@) + (5 () o (v)
a’Uh
0B
where 3(y) = {(D(ph) (' (y)) - B(gp;l(y))} and Dypy, denotes the Jacobian matrix of ¢y,

and §(y)
define

—(y) + 4vn(y) = Broa(y)

v(¢;,*(y)). Now, since 3 is not tangent to 9, (3 is not tangent to R . We

BN = T (Tum) (3 = A) ™ T ))

where (A — Aj,)~! is the resolvent of Ay in R’} with the boundary condition Bpvy, = 0.
Then Ry (\) : LP(Q) — W?2P(Q) with BR,()\)f = 0 in 99 and supp (Ri(\)f) C Up. We
get

A= A)Ru(Nf =0 f + Sy (M) f

where Sy, (\) = T, (I3 = A, T )\ = An) = (T () ).
As before for Re A sufficiently large

150 N fllo @) < ey, M2 ) N2 l0n fl o 0 (2.54)

Finally, letting
V)= > Ru(\):LP(Q) — W>P(Q)
heNU{0}

observe that BV (\)f = 0 in 99 and

(A= Nf= Znhf+zs77h )f = f+Zth

Hence

A=AV : LP(Q) — LP(Q)  and  (A— AV —I+anh
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Now, let observe that we can select A with Re A sufficiently large such that

—_

| anh e @) < > (2.55)

indeed, since each S, has support contained in U and the covering {U;}; has bounded
overlapping (2.49), then

HZth f||LPQ)<Z/|Zth ) fIP dx

Ui h=0

_mzj 1P do < el

where ¢ = ¢(M, ¢, ,Q). Then, (2.55) ensures that for Re A sufficiently large, the opera-
tor I+ > ;7 Sy, (A) is invertible in LP(Q) with inverse W(X) : LP(2) — LP(12). Hence,
since (A — A)V( AW (X) =1 in LP(Q) and u = V(N )W (\) f € W2P(Q) is the solution of
(2.47) for Re A large enough. O

2.3 Generation of analytic semigroup in L*({2) and in
the space C(Q)

Henceforth ) will be a domain with uniformly C? boundary and we set, for zo € R"
and r > 0,
Quo.r = QN Bz, 7). (2.56)

Our aim is to prove that the realization AZ of A in L with homogeneous oblique
boundary conditions as in (2.5)-(2.7) is a sectorial operator. In order to reach this
we need that p(AZ) contains an half plane and that an estimate like |Al|ju|p () <
c||Au — Aul| o () hold for Re X large, A € p(AZ). An important tool for the proof of the
resolvent estimate in L°° is given by the following lemma in which a Caccioppoli type
inequality in the LP norm is stated.

Lemma 2.3.1. Letp > 1 andu € VVif(Q) For every \ with Re A\ > wy (w1 is given in
Proposition (2.2.7)), set f = Au — Au and g = Bujgq. Then there exists C1 depending
only by n,p, pu, M and Q such that for every xo € Q, r <1, a > 1,

1
|)‘|||UHLP(QIO,,.) + A2 | Dullprq,, ) + HDQuHLP(Q

- o)

1
S Cl{HfHLP(QmO,(aJrl)T) + (|)\|1/2 + a)”gl”LP(on,(a#»l)r) + ||Dgl||Lp(on,(a+l)r)

1,1
+— |5+

«

|)\|1/2

)Hu||LP(Qm0,(a+l)7‘) + r_l DuLP(QmD,(a+1)r):| } (257>

where g, is any extension to Q of Bujpq of class Wlif.
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PrROOF. Let 6y : R® — R be a smooth function such that g = 1 in B(0,r),
supp 0o C B(0, (o + 1)r) with

||60||L00(Rn) + CMTHDG()HLoo(Rn) =+ 0427'2HD290||L°0(R“) < K
where K does not depend on o and r. We fix ¢ € Q, we set 0(z) = p(z — z¢). Define
v(z) =0(z)u(z), =€

then v satisfies the following equation

AU — A(, D)U = 9f -2 Z aijDiODju — u( Z Di(aiijO) — Z szla) = f/ (258)

i, ij i=1
and the following boundary condition
Bu=0g+u» (D inoQ
i=1

Now, since Re A > w; and u and v coincide in {2, ., using Proposition 2.2.7 we get

IMllllzr .y + X2 1Dull oo, ) + 1Dl oo

wg.r)

1
< |Allze @) A2 Dol Loy + 1D%ull Lo (o)

< Myl 'l zo () + INY211091 + 1Y BiDibl| 1o ()

i=1

+[[D(0g1) + D(“ZﬂiDig)HLp(Q))- (2.59)
i=1

Set Co = max|lai; w1 (@) + max|bi| (o).

Then

2
1 e < 1 lr @y i) + CoK(a||DU||LP(QIO,<Q+1)T)
1 1
t ozl e + o lullzr@,, o) (2.60)
Moreover

A2l BiDibll oy + 1D(w) ] 5i:Dif)| ooy

i=1 =1

- K
< MI”QZ IIﬂiHooaIIUHLp(mO,(aH),.)
i=1

N
K K
+ 3 (1Bl + 18illo0 =55 ) Nl 2oty o
i=1

-~ K
+ Z II@-||ooJHDUHLP(Q%WW
=1

SCK[(IA”Z?

1
X Mellzo @, i) + NPy ] (261)

r r2
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where C = >"" | ||ﬂi||cl(§)’ and

2109110 () + 1D(0g1) L (0
K
< 219100 o) + o lglze@e, i T 1D9lr @, 0iny)  (2:62)

Taking into account that » < 1 and « > 1, replacing (2.60), (2.61) and (2.62) in (2.59)
we get the claim. O

As a consequence we get the resolvent estimate as the following theorem states.

Theorem 2.3.2. Let p > n. Then there exists K > 0 depending on n,p, u, M,Q, such
that for every X € C with ReX > A}, = wy V 1 (wy is given in Proposition 2.2.7) and for
every u € CHQ) NW2P(Q)

loc

IM[ull oo () + A2 Dul| oo 0y + [A"/2 sup || D?ul (o

rocQl wo,IAI’I/Z)
< K ("2 sup | = Aullpoia )
:E()Gﬁ iCHa
+ INY2lg1ll @) + N2 sup [Dgrllieca,, |, 2m)s (2.63)

ToEN

where g1 is any extension of g = Bujpq belonging to Wllo’f. Moreover, there is K > 0
such that if Au € L>(Q) and Bujpg € C*(8Q), then

|)‘|||UHL°C(Q) + |)‘|1/2HDUHL°°(Q) + |)\|n/2p SUE||D2U||LP(Q
o EN

< ZN((H/\U — Au| o) + \/\|1/2HBU||C(SQ) + ||Bu||C’1(BQ))~ (2.64)

101|)\|71/2)

PROOF. Let zp € Q, [A| > 1, ReA > w; and 7 = |A|”2; then using the Sobolev
inequality (i) of Theorem 1.5.2 we get

1 n
Mlull Lo 9., ) + A2 1Dl L= @, ) + A | D*ull oo

@g,7)
< 20 + DINF (Alull oy o + M IDuloa, o + 1D%ul oo, ) )
Now, using Lemma 2.3.1, we get, for every a > 1,
B (IMllr @,y + A DUl o0, ) + 1D?ulogen, )
< N laoan + N2 (14 ) llar e
+1Dg1zr@) + = (Mllelze@y + N2 1Dul o)

< CUNFIf | Lr(@q) +wn/ (e + D)™ PN llg1]| L= (o)

1/p n/p

w a—+1

wi (ot DV ) (Ml o< (92) + [A[V2 ([ D]l oo ()
o

(2.65)

+ A [1Dg1ll o0, + (
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where Q4 = QN By(xg) = QN B(zg, (a + 1)|\|7*/2?). Therefore

1 n
Ml oy ) + AZ DUl o 0, ) + N 1Dl 1o, )
< ClINE | fllor(u) +wn/P(a+ DN lg]| s o)

leL/p(a + 1)"/p
o

+ A% [ Dg1| o) + ( )(IMllull L= @) + A2 Dull = (0.,)) - (2.66)

where C is a constant depending on p,n, i, Q. Taking the supremum over zo € Q of the
three addenda on the left hand side of (2.66) and summing up we get

IAl[ll Lo () + A2 Du| poe @) + |A[? SUBHD2UHL1’(Q$

ToEQ UY‘Mil/Z)
n % (Oé + 1)% 1
< C(INF sup 1 flls(an) + k= (Alllull ooy + 1A [ Dull e (o)
zo€EN
+wp/Pa+ )P il e o) + [N sup [[Dgillie o))
zoEQ
Taking « sufficiently large in such a way that
1 n
cop ot 1
2
we obtain
1 n
Mllullzs o) + AZ I Dull Loy + A2 sup [D?ullio, | o)
xoEN ’
< 2C(IA|%F sup || fllzo(an) + IA2llg1ll Lo () + A% sup [ Dgillroa.))
:E()Eﬁ :E()Gﬁ

Finally we can obtain (2.63) covering each ball B, (zo) with a finite number of balls with
radius |A|7 2.
To prove (2.64) we use (2.63), which implies

Il ) + A2 Dull s ) + (A" sup || D*ull 1o

. ,A—1/2)
20€Q ELRIRY

< Klwy/? (0 = Aull @) + [ Dgille @) + N2t )]
Finally, choosing g1 = E(Busgq), where E € L(C(99Q),C(Q)) N L(C1(8Q),C (Q)) is an
extension operator we get the claim. O

Next theorem, together with the resolvent estimate (2.64), is sufficient to prove the
sectoriality of the realization of A in L* () so defined

D(AE) = {u e Moy WEP(Q):  u, Au€ L®(Q), Bujpq = 0},
ABu = Au.

Theorem 2.3.3. The operator AZ : D(AB) — L>(Q) is sectorial. Moreover, D(AZ) C
CLe(Q), for every o €]0,1].
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PROOF. Fix p > n. Let Ag = inf,5, Al; then we prove that the resolvent set of A%
contains the half plane {\ € C; Re A > Ag}. First we show that the p(AZ) contains the
half plane {Re A > A}}. For any f € L>(2) and k € N, let ¢4, be a cut-off function such
that

0<¢p <1, =1 in B(0,k), =0 outside B(0,2k).

We consider fr = ¢, f. Now, if Re A > A}D, then, by Theorem 2.2.10, the problem

{ )\uk - ,Auk = fk in Q (267)

Buy, =0 in 0f)

has a unique solution u, € W?(Q) and |lug||w2.r ) < C||frllLr(q) Where C'is a constant
depending on A\, n,p, M,Q and p. In particular, by the Sobolev embedding theorem (see
Theorem 1.5.2), uy, € CL(2), therefore using (2.64) we get

lukller ) + sup [1D*ukllzri, | 2ue) € KO fellze@ < KO fllze@).  (2.68)

xo€EN

Therefore, {uy}x is bounded in C'(Q), so that there exists a subsequence converging
uniformly on each compact subset of Q to a function u € C(2) N Lip(2) such that

[ullLo @) + [Ulipi) < KN fllpe(0)- (2.69)

Now, we show that u € VVlQOg7 (©) and that it solves

A — Au = f in Q
Bu =0 in 00

Let B(zg, R) be the closed ball with zo € Q and R > 4|\|7'/2, then by (2.68) we know
that {uy}x is bounded in W2P(€,, r), so that the limit function u is in W2P(Q,, g).

Since z¢ and R are arbitrary, u € Wi’f (€2). Moreover there exists a subsequence {ugx) } &

converging to u in W1P(Q,, r), and for h, k sufficiently large
{ AMug(ny = tgry) — AlUpn) — Ugry)) =0 in Quy r
Blug(n) = ugy) =0 in 90N Byy i

Now, applying Lemma 2.3.1 to the function ugp) — ugk), we get

lugny = womllw2o@, | 1) < CNlugm) = ugmyllwie, | 1)

< CW)lugny — ugrllwin(,, n) =0 as h,k — oo.

Covering B(zg, R/2) by a finite number of balls with radius |A|7*/% we get that {ug)}
converges in WQ’p(QmO’R/g), so that, letting k — oo in (2.67) we get A\u — Au = f in
Q:Eg,R/Q'

Moreover since the trace operator u — ugr is continuous from W1 (T") to LP(9T",dH™ 1)
for every open subset I of R™ with bounded Lipschitz boundary, then B is a linear and
continuous operator from WQ’Z’(QIO)R/Q) to LP (084, r/2), hence we get

1B(ur — w)llLr(00nB(w0,r/2) < Ctllur = ullwzr,, q)s
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where ¢; is a constant depending on 2, R and by ||3i]| o (), [|7[| o (@)- Therefore we get
Bu =0 in 02N B(xg, R/2). Since zg and R are arbitrary, then

Au— Au = f in Q
Bu =10 in 09

Now, fixed any ¢ > n we can write (2.67) as follows
Auy — Auy, = (Aq — Nug + fr-

We observe that the right hand side is in L*°(2), and its sup norm is bounded by a
constant independent of k. Repeating the above arguments we conclude that u € I/Vlicq Q)
for all ¢ > n, so that u € D(AE). Therefore p(AZ) > {x € C: ReX > AL} for every
p > n. Thus, from estimate (2.64) and Proposition 1.2.7 we conclude that AZ is sectorial.
Now, let u € D(AZ), then by the Sobolev embedding u is continuously differentiable
and its gradient is bounded: indeed, fixed p > n and f = Apu — Au, by estimate (2.69)
we get

[1DullLe (@) < c(llull Lo (@) + [[AullL= ()
Moreover, choosing p = n/(1 — «), using Theorem 1.5.2 (inequality (ii)) and (2.64) with
A=A, we get, fori=1,...,n,
[ Diu(z) — Diu(y)| < clz —y|*([ull L= @) + [|Aull L= (o))
for all z,y € R™ such that |z —y| < (A1)~!/2. On the other hand, if [z — y| > (A})~1/2
then

|Diu(x) — Diu(y)|
|z —yl*

< 2[|Dsul| oo ey (A;)Q/Q
< c([lullpoerny + [[Aul| Lo mn))

Therefore, D(AZ) c C*(Q) for a €]0,1].

From Theorems 2.3.2 and 2.3.3 we get the following result.

Corollary 2.3.4. Let Ay be as in Theorem 2.3.3. Set

loc

D(AE) = {u € M,s1 WP (Q):  u, Au € Cy(Q), Bujpg = 0},
ABu:D(AB) — Cy(Q), AE = Au.

Then the resolvent set of AS contains the half plane {\ € C; ReX > Ao}, and AZ is
sectorial.

PrROOF. Since D(AZ) c Cy(Q), then p(AZ) C p(AB). Therefore p(AE) contains
the half plane {ReX > Ag}. Estimate (2.64) and Proposition 1.2.7 prove that AZ is
sectorial. O



50

2.4 Elliptic boundary value problems in some Sobolev
spaces of negative order

In this section, as in the preceding one, we suppose that €2 is a domain with uniformly
C? boundary 9. Here our aim is to prove existence, uniqueness and some useful esti-
mates for the solution of a boundary value problem for an elliptic operator A in suitable
Sobolev spaces of negative order. Actually, we are interested in deducing L' norm esti-
mates of the gradient of the resolvent of the realization of A in L' (see Theorem 2.5.3).
This can be done by duality starting from the solution of the dual problem.

In this section we follow, with significant modifications, ideas from [47], [48]. Before
stating the main result, let us introduce some notation.

Let 1 < p < oo; we shall consider the Banach spaces (Wy*(€)) and (W'r(£))
respectively denoted by W~ (Q) and W{l’p’(Q) (we set 1’ = o0). Each element
few=tr'(Q) (resp. f e W{l’p/(Q)) admits a (not unique) L representation; that is,
there exist fo, f1,..., fn € Lp/(Q) such that

(f,v)s :/Qfoudx—l—Z/inDivdx (2.70)
i=1

for every v € Wol’p/(ﬂ) (resp. v € W' (Q)), where (-,-), denotes the duality between
W—LP and Wol’p (resp. W, P and Wl’p/), see [1, Theorem 3.8]. In order to indicate an
LP" representation of f we often write

f=1J— ZDifi (2.71)
i=1

where the equality has to be intended in the distributional sense specified in (2.70).
Obviously (W'P(£2))’ is continuously embedded in (W,”(£2))’, and there is a natural
embedding of L (Q) in (W'P()): we can identify any L?" function fy with the func-
tional

UH/glfo(x)v(x)d:C.

We can consider these spaces as Banach spaces endowed with either the norm induced
by duality or the norm defined by

n

inf {Z | £ill Lo () fi satisfying (2-70)} :
i=0

In the following lemma we prove some useful estimates that hold in these spaces.

Lemma 2.4.1. For each p > n there exist two constants cy,co such that for each xy € Q,
r >0 and u € LP(Q) with support in Qy, » (given in (2.56)),

lally -1y < errllullzogey (2.72)

el ooy < ™™ Pl ooy (2.73)
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PROOF. Let ¢ € W' (Q) be such that [|¢]|yy1. (@) < 1. Then by Sobolev embedding
@ € LY(Q) with ¢ = (np’)/(n — p') and ||¢||La(n) < ¢ where ¢ depends only on 2. Hence

fulho ey = { [ updes ¢ € W@, Tellynro <1

but the following estimate holds
AWWSMW@WWM@SWMmm

and (2.72) is proved. In a similar way one can prove (2.73). O

Here, in order to obtain a precise estimate for the L> norm of the solution of an
elliptic boundary value problem in W, 1’OO(Q)7 we follow a procedure similar to the one
used by Stewart in [42] and in [43] starting by W, "P(Q), 1 < p < .

2.4.1 Formally adjoint boundary value problems

Let A and B be the operators defined respectively in (2.1) and in (2.5) satisfying (2.4)
and (2.7). Let consider the elliptic problem (2.11); we are interested in the formulation of
its formally adjoint boundary value problem, hence, (at this moment) we do not take care
of the smoothness properties of the coefficients and we proceed by formal computations.
We define the formally adjoint differential operator A* of A by

A" =" Dj(a};Di) + Y biD; +c* (2.74)
ij=1 j=1
with
aj; =a;; b =—b; ¢ =c—divb.

Then by the divergence theorem
/ vAudr = / uA*vdx +/ ((ADu,v)v — (ADv,v)u+ (B, v)uv)dH"
Q Q a0

for all u,v € C?(Q) N CHQ). We let vy := Av and p(z) = %, and define a

vector field by
T:=v4 — pp.
We observe that (r,v) = 0 and that

(D,va) = p(D,B) +(D,). (2.75)
Since p(z) # 0 for all x € 99, we can define 8* by

pB* i=va+T
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so that
(D,va) = p(D, ") = (D,T). (2.76)

We see that 5* so defined is a non-tangent vector field on 99, indeed p(8*,v) = (v4, V).
From (2.75) and (2.76) we get

(ADu,v)v — (ADv,vyu = p(v{Du, f) — u(Dv, %)) + (D(uv), )
Finally we define v* by
oy = py—(B,v) +divr
and the formally adjoint operator B* of B on 02 by

B* = BDi+7". (2.77)
=1

Finally, applying the divergence theorem, we obtain

/v.Auda:z/u.A*vdx—i—/ p(vBu — uB*v) dH" !
Q Q a0

for all u,v € C%(Q) N CH(Q).

Henceforth we focus our attention to a particular choice of the boundary operator 5.
We select the conormal boundary operator

n

B(z,D) = Z a;j(x)vi(x)D;, (2.78)

ij=1
in this way the formally adjoint operator B* is defined as follows
B* = (D,va) - (B,v)

(since p=1,7=0, f* = vy and v* = —(B,v)), and A* is defined in (2.74). We suppose
that a;j,b; and c are real valued functions such that

Q5 = Qji, Qg b; € WZ’OO(Q), cE LOO(Q) (279)

Assumption (2.79) guarantees that hypotheses in Section 2.1 are satisfied both for the
couple of operators (A, B) and (A*, B*) and Theorem 2.2.10 can be applied to each of
them. We set

My = H}%X{HainWloo(Q)v [0l w2 ()5 lell o< @) }- (2.80)

Now, we consider the realization of A with homogeneous boundary condition given
by B as in (2.78) in the Banach space Wy "%, so defined

E,: D(E,) = W'P(Q) c W bP(Q) — W, 1P (Q) (2.81)

by
(Bpu,v)y = a(u,v)  ue WHP(Q), v e WH'(Q) (2.82)
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where

a(u,v) = —/Q<ADU,D”U> dm—i—/ﬂ(B,Dude—i—/chvdm (2.83)

in WP (Q) x W' (). Analogously we could define the realization of (A*, B*) in Wb
in this way:

E, : D(E,) = W' (Q) c W ' (Q) — W' (Q) (2.84)
by
(Epu,v)y = a*(u,v) uwe WP (Q), v e WHP(Q) (2.85)
where
a*(u,v) = — / (ADu, Dv) dzx + / (B, Dv)u dx —|—/ cuv dx (2.86)
Q Q Q

in Whe' (Q) x Whe(Q).

We start with two technical results involving LP estimates that are true for both £,
and F, and that for simplicity are stated only in one case.

Theorem 2.4.2. The operator E, is sectorial in W*_l’p(Q). In particular there is a
constant w, € R depending on n,p, u, M1, such that for each A € C with Re A > w,
and for each f € Wi VP(Q) the solution u € W'P(Q) of the equation (A — Ayu = f
satisfies

Ml 10y + A2l o) + lellwir@) < Killfllw-1e g (2.87)

where K1 > 0 is a constant independent of A and f.

PROOF. Denote by AE the realization of A in LP with homogeneous boundary con-
ditions Bu = 0 and analogously A*ﬁ* the realization of A* in LP with homogeneous
boundary conditions B*u = 0. We know that D(AP) = {u € W>P(Q2) : Bu =0 in Q}.
Then for each u € D(A*ﬁ*) and v € LP(Q), we have (A*f:*u,w = (u, (A*g)*@ where
(A*f/*)* is the adjoint of A*ﬁ* and belongs to £(LP(2), (D(A*ﬁ*)’) where (D(A*ﬁ*)’ is
the dual space of D(A*f,*). Note that the restriction of (A*ﬁ* )* to D(AF) coincides with
Af . Therefore, from the complex interpolation theory (see Theorem A.3.5), we have that
(A*f/*)* is a bounded linear operator from [LP(Q), D(AJ)]1 /2 to [(D(A*g*))’7 LP ()12
where [, -]; /5 is the complex interpolation space of order 1/2, (see Section A.3 for the
relevant definitions and results). Using [39, Theorem 4.1], which holds for domains with
uniformly smooth boundary, we can characterize the complex interpolation spaces in the
following way:

[LP(), D(A))]1/2 = WHP(Q)

[(D(A* D)), LP ()12 = [L (), D(A* )]y = (WHP(Q)) = WSIP(Q)  (2.88)

where in the first equality in (2.88) we have used (A.16). Therefore the restriction of
(A*f/*)* to the space WP(Q) is a bounded linear operator from W1?(Q) to W, P (Q)
and coincides with E,,.

Now, we show that there exists a constant k; such that for each A with Re A large enough,

(A= AE)AHL(LP,D(AE)) < k. (2.89)
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Since Af is a sectorial operator, there exists w; € R such that for each A € C with
Re A > w; and for each f € LP(Q) the equation

A=Au=f
admits a solution u € W2P(Q) with Bu = 0 in 9 satisfying (2.48). Hence
lullpazy = lullLe@) + AUl Le@) < A+ [ADulle@) + [1f ]2 )

14 )|
<( Y
Al

for Re A large. Analogously, there exists a constant wy € R and k2 > 0, such that

+ D fllee) < Erllfllze)

[(A = A*ﬁ )_1HL(LP’,D(A*E,*)) < ko (2.90)
for Re A > wsy. Using (2.90) we get that
*B*\—11% __ «* B \x1—1 «B*
(A=A )T =[(A=A" ) € L(D(A, ), LP)

hence an argument similar to the previous one yields that the operator [(A — A*f}*)*l]*
belongs to L(W, "P(Q), Wh?()) and coincides with (X — E,)~h
Set K = ki + k2 and wp > w1 V wo; then, for every A with ReA > w, and for every
f € Wi hP(Q) we have that [[ul|ywrsq) < K| flly-1» ) where u= (A = E,)~' f. Then,
for every v € Wh?' (Q),

(f, U>* = )‘<u7 ’U>* - <Epu) U>*
Thus

(1, 0) ] < AT (B, 0] + (£, 0).])
< oA (llullwrr@ el o + 1y ol o))

< oA (K s ol @ + 1 =gy 1ol o))

Hence we have proved that

|>\|||U||W;1vP(Q) + ||u||W1:P(Q) < C||fHW;1vP(Q)~ (2.91)
Therefore, (2.87) is consequence of (2.91) and of the fact that
(WP (Q), WP (Q))1/2, = LP(Q)

*

for 1 < p < oo (see [46, Section 2.4.2, Theorem 1; Section 4.2.1, Definition 1]). O

Remark 2.4.3. We observe that if f € LP(Q2), then u = (A — E,)"'f € D(AJ) and
therefore Bu = 0 in 0€.

Lemma 2.4.4. Letp > 2 and f € W{l’p(Q) with f = fo — > i, D fi; then for each

A € C with ReX > w,, for each r < 1 and for each o € Q, the solution u € D(E,) of
the equation A\u — Au = f satisfies the following estimate

[ullwie,, ) < Ko {Z [ fill Lo (22 20) + T foll Lo (@0 20) + TWIUILvmmO,m} (2.92)
i=1

where Qg » is defined in (2.56) and Ko is a constant independent of A and f.
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PROOF. We point out that the space of functions

C,l={g9=90—Y_ Digi; g: € C{(Q)NL(Q), > givi =0 on 90}

=1 i=1

is dense in Wy P , because every f; in the representation of distributions in W, LP ag
in (2.71) can be approximated in L? norm. Hence, it is sufficient to prove the claim for
functions in C, 1. Then, passing to the limit in the estimate we get the claim for every
few P Q).

Suppose then that f € C 1 for each 79 € Q and r < 1, let § € C?(R") with 6(z) = 1
for |z — x| < 7, O(z) = 0 for |x — 29| > 27, |DO| < cr~! and (ADO,v) = 0 in 9.
Such a function can be obtained in the following way: first we consider a cut-off function
Y € C2(RM), (x) = 1in B(xg,r)NQ and ¢ = 0 in QN (B(xg,v/2r))°, then we modify ¢
in a neighborhood of the boundary making it constant in the direction Av in order that
(D¢, Av) = 0 in 0. Finally we recover the regularity and preserve the homogeneous
boundary condition by convolution with a family of mollifiers whose support is B(0, €)
with e sufficiently small. In this way the function w := fu satisfies the equation

w—-—Avw=E+F+G=g (2.93)

where

E=- i Di(aijuDﬂ) — En:bluDﬂ
i=1

4,j=1

F=- i aiijuDiQ

i,j=1
G=->_Di(0f:)+>_ f:Dib +0fo (2.94)
i=1 i=1

Thus, multiplying (2.93) by w and integrating by parts we get

/Q(AD(QU),D(QU» dx :/

u uar — — C 'LL2 i
[ (B.D(Ou)0ua /(A ) (0u)? d

Q
_ u? dx
+/Q<AD9,D(0u)>udx /Q<B,D9>9 d

_/<AD9,Du>9udm+Z/ 6,D;(0u) de
Q = Jo

+§/in(Di9)0udx+/Qf092udz (2.95)

We point out that in (2.95) all the integrals are on QN B(xg,+/2r). Now, using (2.4) and
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the properties of the function 6 we get

—1 2
pHIDUl L2 B oy < €Il 2 0nBag.var) T Z 1fillZ2 0 B oz

—|—/ (B,Du)02udac+/ (ADO, Du)0u dx
QﬁB("cg,\fr) QNB(x0,V2r)
+ / 02 f; D;u dx

Z ﬂB(wo,\[T

Finally, using the inequality ab < ca® 4+ €~ b2, we prove that there exists a constant ¢

depending on the norm of the coefficients of .4 and on the ellipticity constant p such that

[1Dull 22 (@B (o)) < C(Z 1fill 2B @o,var) T+ T_IHUHLQ(QOB(xU,\/Er))) (2.96)
i=0

which implies the statement for p = 2. By Theorem 2.4.2 applied to equation (2.93), we
get

n
[Oullwe@) < Kl”.‘]”w;l’P(Q) < Kl(z ||fiHL:D(QmB(zO’\/§7-))

1=0
A7 Y Mgl + Y10l L) 1l Lo (n (a2
ii=1 i=1
+ 3 ||aiij’U/Di9HW;1,P(Q)) (2.97)

ij=1

By the Sobolev embedding theorem, every test function ¢ € wie' (©2) belongs also to
L7(Q), with ¢' = np/(np — n — p), and (9]l (q) < Kkl o) with k& = k(p, Q).
Therefore, by (2.96) for 2 < p < 2n/(n —2) if n > 2 (for every p if n < 2), we get

||aiijUDi9||W*’1’p(Q) < 07"_1HDU||an/(n+p)(QmB(x(,,fr))
< e 2)||DU||L2(mB(xo,fr))

<cr” Z I fillL2(@nB(xo,20)) + 77 ||u||L2(QnB 3:0,27")))
=0

C(Z I fill e (@ B(wos2r)) + 7 Il Lr(@nB(wo,20)))
1=0

where ¢ depends on n, ||a;; ||, p, © and it may change from a line to the other.
Summing up we find

[0ullw.r Q) < K2(Z HfiHLP(QﬂB(mO,ﬁT)) + 7“_1||UHLP(QﬂB(zo,2T)))'
=0
Since fu = u on Q N B(xg,r) we get the statement for every p € [2,2n/(n — 2)] when

n > 2 and for all p > 2 if n < 2. Repeating the same procedure, starting from p = —"2
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we can prove the statement for every p € [2,2n/(n — 4)] if n > 4, for every p if n < 4.
Thus, after [n/2] steps, the proof is complete. O

The following estimate is proved by using a modification of Stewart’s technique. It
will be useful in order to obtain the estimate of the gradient of the solution of (2.111) in
LY(Q).

Theorem 2.4.5. Let p > n, f € Wi "°(Q) N W "P(Q); then, there exists woo > wp
such that for each A € C with Re A > wo, the solution w € D(E,) of A\u— Au = f belongs
to WP and satisfies

‘)‘|1/2HU||L°°(Q) < K3||fHW*—1,oo(Q)7 (2.98)
where K3 is a constant independent of \,u and f.

PROOF. Let zp € Q and r < 1. Let 6 be a cut-off function as the one considered
in proof of Lemma 2.4.4: § € C*(R"), 6(x) = 1 on B(xg,r) 0(x) = 0 outside B(z, 2r)
and with |[D%0|| () < er~1ol for each |a| < 2. As f belongs to W °(Q), it admits
a distributional representation f = fo — > | D;f;, where f; € L>(Q) for each i =

0,1,...,n and 37" || fillLe(@) = || fllw-1.(0). Note that u € WHP(Q) for p > n by
Theorem 2.4.2, therefore fu € W1P() and solves

A=A)Ou) =g (2.99)

where ¢ is defined in (2.94). By (2.97), (2.72) and (2.92), we get

n
gl 100y < Ka {||u|W1,pmm,2,.> +r Ml Lo a0 + D ||fi||mm,2,,,>}

1=0
< K; {Z I fill o (2, a0y + 7‘_1||U||Lp(szm,4r>}
=0
< Kgr/? {Z [ fill L) + 7’1||U||L°°(Q)} : (2.100)
1=0

where Ky, K5 and Kg are constants independent of r, A, f and u. Since
Wl’p(Qmo,Qr) - Co(ﬁzo,%) = LP(Qyg,2r)

for p > n and the first injection is compact, then for each ¢ > 0 we get

||0u||L0°(Qz0,2r) S E:Tlin/p||0uHW1’p(Qwo,2r) + C(E;)T’in/pHHUHL:”(QmO,zr)’ (2101)
where ¢(¢) is independent of r, A\, v and f (see Lemma 5.1 of [30]).
Moreover, (2.73) and the Holder inequality imply
HGUHWII"”(QZO,T) < chl_”/p||9u||Lp(Qwo,r) < cor|ful| Lo ()- (2.102)

Therefore, from (2.101) and (2.102) we get

T*QHGUHW;LOC(Q) + r71|\0u\|Loc(Q) < 5r*"/p|\0u\|wl,y(g) + 8(6)7"717"/”||9u||m(g).
(2.103)
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On the other hand, from (2.87)
IMGullyy -0 gy + I 2100l Lo @) + 10ullwioi) < Kallgly-10 - (2.104)
Therefore, by (2.103), (2.104) and (2.100) we deduce
P2 Gullyy 1,00 () + 70U e 0

n
< K1 Kg(e +c(e)r  ATY2) (e ull o) + D Ifill L)) -
1=0

Set K7 = 4K, Kg and choose woe > wp and € = K1, 7 = Koe(K; M)\ ~Y2 = Kg|\|~Y/2.
Then, if xy is a maximum point for the function |u| we obtain

_ 1
Ky 2|)‘|||9u||w*—1v°°(9) + §K8 A2

1 n
ull=(o) < 5 D il @) < 1F 1l -1y
=0

(2.105)
Thus (2.98) is proved. O

2.5 Generation of analytic semigroups in L!(Q)

In this section we prove that the realization of uniformly elliptic operators with suit-
able oblique boundary conditions is sectorial in L!(2) where  is assumed to satisfy
(2.2). We consider the operator A in divergence form with real-valued coefficients

:zn:Di(ai] +Zb )D; + c(x)

ij=1

= div(A(z)D) + B(z) - D + c(x). (2.106)

We suppose that A is uniformly p-elliptic, i.e.,

n

pER < Z ai;(2)6é; < pléff, zeQ¢eR” (2.107)

i,5=1

and that
Q5 = Qji, Qg b; € WQ’OO(Q), (S LOO(Q) (2108)

Actually the regularity assumption on the coefficients b; will be weakened later. Define

My = IT;?;X{H%‘HWZMQM [[billw2. (), lell Lo o) }- (2.109)
We consider the following first order differential operator acting on the boundary

B(x,D) = (AD,v) Za” (2.110)
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Since we would like to solve the problem in L' by duality from L>, we point out that
the choice of the coefficients and the assumptions of regularity (2.108) guarantee that
hypotheses in Section 2.1 hold also for (A*, B*); this fact allows us to apply the results
of Section 2.3 to the realization of A* with homogeneous boundary conditions given by
B* in L*°(Q).

In order to deduce a result of generation in L'(£2) we argue as follows. Set

Da={uec L) NC*Q); Au € L'(Q),Bu =0 in 00Q}.

Lemma 2.5.1. A: Dy C LY(Q) — LY() is closable in L' ().

PROOF. Let (u;) be a sequence in D4 such that u; — 0 and Au; — v in L'().
Then, integrating by parts,

/apudx = lim [ pAu;dx = lim /ujA*godx =0
Q i—oo Jo i—oe Jo

for every ¢ € C2°(€2). Hence v = 0, which implies the assertion. O

By Lemma 2.5.1 we can define the realization of A in L! with boundary condition B3,
(that will be denoted for simplicity by (A1, D(A1)) to be the closure of Ajp, in L'(Q),
that is, the smallest closed extension of A|p, in L'(Q2). Then D(A;) is the closure of D 4
with respect to the graph norm in L'. Now we are in a position to prove the following
result.

Theorem 2.5.2. There exist C' > 0 and wy € R, depending on n,u, My and §2, such
that for Re A > wy the problem

Au—Au=f in
{ Bu=0 in 90 (2.111)
with f € LY(Q) has a unique solution u € L*(Q) and
AMllullzr @) < CllfllLr@)- (2.112)

PROOF. First of all we prove that the range of (A— A7) contains the space of functions
L2 (Q) = {¢ € L*>°(Q); supp ) CC Q} which is dense in L!(12).
Indeed, let 7 € C?(Q) be such that

Yoijer [Digm| + 370, [Dim|? < e
e ™ e LY(Q)
<AD7T, V> =0 in 90

Moreover, if Q is unbounded, we also require that lim ;|0 zeq m(2) = +o00. Such a 7
exists. For instance, when Q = R" one can choose w(z) = /1 + |z|2. In the general case
one can adapt the previous example modifying 7 near the boundary in a suitable way.
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We define II(z) = exp[n(z)]. Then, for every function i) € L°(Q), we get IIy) € LX(£2)
and

Au— Au =1 € LP(Q)

Bu=0 in 0

if and only if

{ Ay — Ay (TTu) = Ty € L2 (Q) (2.113)

B(Mlu) =0 in 09
where

n

./471— = ./4 -2 Z (lijDﬂTDj + ( Z (Di(aiijTr) — aijDiﬂ'Djﬂ') + szDm)
i i=1

ij=1 ij=1

As it is easily seen, the operator A, satisfies the assumptions (2.3)-(2.4); moreover, since
Al(z,€) = A%(z,€) then A, satisfies also the root and the complementing conditions.
Therefore, by applying Theorem 2.3.3 we get that there exists ITu € D((A,)Z) C L>(Q)
solution of (2.113).

Hence u € {v € CYH(Q)N LY (Q); Av € L*(Q)} and ¢ is therefore in the range of (A — Ay).
Now we prove (2.112). Let consider u solution of Au — Au = f € L'(Q) and let

A* =" Dj(ai;Di) = > biD; + (¢ — divb)
i,j=1 j=1

Then, from Theorem 2.3.3, it follows that (A*)Z" with oblique boundary conditions

B*(x,D) = (A(z)D,v(z)) — (B(z),v(x)) = 0 generates an analytic semigroup in L>(£2)
and so the elliptic problem

{ Aw — A*w = p € L=(Q) (2.114)

B*w =0 in 0Q

has a unique solution w € D((A*)E) for Re A sufficiently large. Moreover, taking Re A
sufficiently large we get

IMlwllzoe @) + A2 [ Dwll oo @) < Kllll Lo o)-

Now, we can apply the method used in Pazy (see [35]) to obtain
Julls o) = sup { [ ate)eta)dss ¢ € L2@), el <1}
< Sup{/u(x)()\ — AN wydx; w, € L(Q)solution of (2.114), [|¢[|z~ @) < 1}

< sup {/ww(/\ — A)udz; w, € L>(Q)solution of (2.114), [l¢]|r~ o) < 1}

in particular,
ullzr ) < KX fllL @)-
So, (A\— A1) is an injective operator with closed range in L(£2) and the proof is complete.
U

The following theorem establishes further properties of the resolvent operator.
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Theorem 2.5.3. Under the assumptions of Theorem 2.5.2, there exist wj > wy, K' >
K and 0] € (n/2,61) depending on n,u, My and Q such that for every A such that
larg (A — w})| < 64, the solution of (2.111) satisfies

|)‘|1/2HDUHL1(Q) <K'l fll (o) (2.115)

PROOF. Let ¢ = dive) with ¢ any function in L*°(Q2, R™). By the estimate (2.98) we
know that for A with Re A > wy, the solution of the following problem

A — A*v = divyp
{ B*v=0 on 09 (2.116)
satisfies
20l e (@) < Kalldiveblly 1. - (2.117)

‘We notice that
ives s = sup{{diver, @) : o € WHLQ), @llwrago) < 1} < [0llz.  (2118)

Now, if u is the solution of (2.111), we get

[1Dul[Lr ) = Sup{/Q<DU($)M/J($)>d$ PP e O (R, (9]l < 1}

—sup{ [ ) diviode: v e CHOR. [oilueioy <1
Q
< sup {/ u(z) divip(z)de - op € CZ(QR"), [|dive)[[yy—1.00 ) < 1}
Q
= sup {/ u (A — A") vy dz : vy solution of (2.116), ||diV’lz}||W*—1,oo(Q) < 1}
Q
= sup {/ [(A = A)u] vy dx : vy solution of (2.116), [|dive)|[y—1.00 ) < 1}
Q
< csup{Hf||L1(Q)HWHLN(Q) : v solution of (2.116), [[div)|lyy-1. g < 1}.
(2.119)
Now, taking into account (2.117), we get
IDullzi0y < K'INT2 £l 0)-
O

As a consequence of Theorem 2.5.2 we have that A; is sectorial, that is there exist
K € R and 6, € (7/2,7) such that

Y00 ={A € C; A # wy, larg (A —wi)| < 01} C p(Ay)

and

RN, Al 2z o)) < A=wi|

holds for each A € ¥¢, o, -






Chapter 3

Estimates of the derivatives of
solution of parabolic problems

in L1(Q)

As a consequence of Theorem 2.5.2 and Proposition 1.2.7 we have that (A, D(A;1))
is sectorial in L!(), then it generates a bounded analytic semigroup 7'(¢) and T'(t)uq is
the solution of

dw—Aw =0 1in (0,00) x
w(0) = ug in Q
(ADw,v) =0 in (0,00) x OS2

for each ug € L*(£2). Moreover there exist ¢; = ¢;(Q, u, M), i = 0, 1 such that
1T 2y <co, >0 (3.1)

and
tHAlT(t)”ﬁ(Ll(Q)) <c, t>0. (32)

Moreover since D(A;) is dense in L!(Q) by construction, T(¢) is strongly continuous in
L'(€). Hence
11%1+ IT(t)uo — uo|| 1y = 0 for all up € L*(2) (3.3)
t—

Notice that for every v € L'(Q) and for every ¢t > 0, T'(t)u € W21(Q).

3.0.1 Estimates of first order derivatives

Now, using the gradient estimate (2.115) of the resolvent operator R(\, A1), we esta-
bilish the following further property of the semigroup T'(¢).

63
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Proposition 3.0.4. Let 2, A and B be as in Section 2.5 and let T(t) be the semigroup
generated by (A1, D(A1)). Then, there exists co depending on Q,pu, My such that for
t>0,

2T () £(nr @) < ca- (3.4)

PROOF. Let 8] be as in Theorem 2.5.3 and suppose w| = 0 (otherwise we consider
Ay — w). Let consider the curve

L ={AeC;larg\| =01, |\ > 1} U{N e C: |arg\| < 07,|\ =1}

oriented counterclockwise. We know that for ¢ > 0
1
T(t) = — [ e®R(\, Ay)dA.
()= 57 [ RO A)

Setting A’ = A\t we get

1

() = o~

/ N RO Jt, At dN
Iy
and

™

1 /
DZT(t) == T / 6)‘ t_lDiR()\//t,Al)d)\/ L= 1, oo
r
therefore by (2.115)
IDTW ey < [ SNWAN et 2 =L
r

and the result is proved. O

Remark 3.0.5. [Neumann boundary conditions] We have stated Theorem 2.5.2 in
the form we most frequently use, but the estimates hold under more general assumptions.
In particular, all non tangential boundary conditions are allowed. We denote by ¢, a
constant which can be used in the inequalities (3.1)—(3.4), when Neumann boundary
conditions are associated with a general uniformly elliptic operator.

Remark 3.0.6. [Assumptions on the coefficients b;] The result of generation in L
and estimates (3.1), (3.2) can be achieved under weaker assumptions on coefficients b;.
Assume A, B as in (2.106), (2.110) with coefficients satisfying (2.108), (2.107). Then we
know that (A, D(A;)) generates an analytic semigroup in L*().

We consider a first order perturbing operator C = 27:1(51 — b;)D; with b; € L>(Q)
bi # b;. Let C; be the realization of C in L'(Q) with domain D(Cy) = W1(Q). The
operator Cy is A;— bounded and more precisely for every ¢ > 0 there exists c¢(e) > 0
such that

[CrullLr (o) < ellArul|rio) + (&) |[ullLr @)

holds for every u € D(A;). Indeed let u € D(A;), (suppose wy = 0, otherwise consider
Ay —wi) then u = R(\, Ay) f for every A € C with Re A > 0 and f € L'(2). Moreover,
by (1.7) we can write

u = / e MT(s)fds, Rel>0.
0
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Thus, in particular for A > 0

||Du||L1 @ < C||f||L1(Q)/ \[ \/—”fHLl(Q (\[HUHLl «) + f||A1u||L1 Q))

This implies that D(A;) < W11(Q); moreover, minimizing over A > 0, we get

1/2 1/2

c
1Dullzr @) < ellullLyig) lArull o) < ellArullzr@) + Zllullzr @ (3.5)
and by Theorem 1.2.10 we conclude. We point out that the first inequality in (3.5) asserts
that Wh1(Q) € Jy,2(L'(22), D(Ay)).

3.1 Estimates of second order derivatives

In order to proceed, we also need a precise L!-estimate of the second (spatial) deriva-
tives of T'(t)uo, for ug € D(Ay). This is proved in Proposition 3.1.3 below. The argument
used here is similar to the one used in [18, Theorem 2.4], where Q is bounded and dif-
ferent boundary conditions are imposed. The scheme is the following: we estimate the
second order derivatives in Proposition 3.1.1, and then, using this result, we characterize
the interpolation space Da(a,1) = (L'(Q), D(A))a,1 as a fractional Sobolev space and
use this to improve estimate (3.6) using the Wh! norm of u instead of the L* norm. We
start with the following result.

Proposition 3.1.1. Let Q, A, B be as in Section 2.5. Assume, in addition, c € W (Q);
then, there exists c3 depending on n, u, Q, My, ||c[lwi=q), co c1, c2, ¢, such that for
every t € (0,1) and u € L*(Q) we have

DT (t)ull (o) < esllullzio)- (3.6)

PrOOF. We set for 0 > 0 u, = T'(0)u and
Mj = max{||Al|2,00, [| B|2,00, ll€ll1,00 }- (3.7)

By the regularity of the boundary 92 we can consider a partition of unity {(n,,Up) then
such that suppn, C Up, > nema(x) = 1 for every z € Q and 0 <, < 1 for every h € N,
Uy C Q, Uy, for h > 1 is a ball such that {Up,},>1 is a covering of 9Q and {Uj, }ren is a
covering of Q with bounded overlapping, that is there is k > 0 such that

> xv.(z) <k, VeeQ (3.8)
heN

Moreover we choose 1, in such a way (A(x)Dny(z),v(z)) = 0 for every z € 9 and set
M := sup,en |71 |2,00, Which is finite by the uniform C? regularity of 92. We can also
consider coordinate functions vy, : Vj, — B(0,1) such that ¢,(V, N Q) = B*(0,1) =
{v = W\ yn) € B(O,1) : yn > 0}, hn (Ve N 0Q) = {y = (v'sya) € B(0,1) : yn = 0},
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d(vp)(a(z)v(x)) = —e, for every x € 9 where d(1 ), denotes the differential of ¢y, at
2. Finally we suppose that there is a constant M, such that

sup {IID*%n 12,00, 1 D05 2,00 } < M.

Notice also that we may assume that for all A > 1 the inclusion U, CC V}, holds, and
that we can choose a C? domain E such that (U, N ) C E C B*(0,1). Notice that
1y € WHH() and denote by u(t) = T(t)u, the solution of the problem

Ow — Aw =0 1in (0,00) x 2
w(0) = u, in Q
(ADw,v) =0 in (0,00) x 0.

We want to estimate the L'-norm of tD?u(t) by the L'-norm of u; we shall use estimates
(3.1)-(3.4). The functions vy, (t) = u(t)n, solve, for every h € N, the problem

Ow — Aw = Apu(t) in (0,00) x Q

w(0) = Npus in (3.9)
(ADw,v) =0 in (0,00) x 90
where
Apu(t) = =2(ADny, Du(t)) — u(t) div(ADng) — u(t) (B, Dnp) . (3.10)

Notice that the derivative Dyuvy,(t) satisfies the equation 0;(Dyvp(t)) — A(Dpop(t)) =
Afu(t), where

Afu(t) =div (DeA)D(u(t)nn)) + ((DrB), D(u(t)nn)) + (Dic)u(t)nn + Di(Apu(t))
u(t)nn)) +

(Die)u(
—div (DR A)D(u(t)m)) + ((DxB), Du(t)n)) + (Dec)u(t)m, (3.11)
+ Di[~2{ADny., Du(t)) — u(t) div(ADny) — u(t) (B, D)

For Dyvy(t) we consider the problem

ow — Aw = Afu(t) in (0,00) x Q
w(0) = Dy(nhus)  inQ (3.12)
(ADw,v) =0 in (0, 00) x 90

whose solution is vpg (t) = T'(t) D, (Npue ) + fot T(t—s)A¥u(s)ds. Now we consider h = 0,

i.e., we draw our attention to the inner part. Since vo(t) = nou(t) = 0 in Q\ Uy, it turns
out that Dyvg(¢) is the solution of (3.12) with A = 0. Then

¢
Dyvo(t) = T(t)Dr(nous) + / T(t — s)Aku(s)ds, (3.13)
0
where AE is the operator defined in (3.11). Then, differentiating, we obtain

%m@z&mMMWM+ADMWﬂMMM®
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by which, using (3.4),

t
IDRvo)llzry < [IDIT () Dy(nous)|l 22 (o) +/ IDIT(t — s) Afu(s)|| L1 (o) ds

< Z|Du(mous) M) + / bu(s)| 1 (o ds

f
< \[|\770|\W1°°||Uo||W11(Q)+ / ﬁ||Aou< o ds

Finally, estimating [Afu(s)|[z1q) by (3.11) we get [[Afu(s)l[rro) < cllu(s)w21(q)
where ¢ = ¢(M, Mz). Summing on [ and k, using (A.1) and again (3.1), we get

1 to
2 <o L1 2
120022 < e Zelluo ooy + | = ID*u()1 o)

where ¢ = ¢(M, My, c3,n). We now consider h > 1, i.e., we consider a ball intersecting
0.

Using the transformation f(y) = f(wgl(y)) for a generic f defined in Q2 N V4, and
since vy, is the solution of (3.9), we get that for every h > 1 the function 95(t,y) =
nn (W5, (y))u(t, 5 *(y)) is the solution of the following initial-boundary value problem
with homogeneous Neumann boundary conditions

oow — Aw = Apd  in (0,4+0) X E

15(0) = Mo in F (3.14)
8—1:/):0 in (0, +00) x OF

where A is the operator defined on B(0,1) as follows
Aw := div(A Dw) 4 (B, Dw) + éw

whose coefficients (here we omit the index h to simplify the notations and by analogy
with (3.9)) are given by

Aly) =(Don) (03 @) - Ay ) - (Dvn) ' (0 ()
(B(y) :=T&[(Dm>(¢;<>> < <y>> " <>> (D0 W)]
+ Te[(Dn) (67 () - G ()] (Do) (0 (9) — ai |an)]

+ [(Dvn) (Wi ) B<w;1<y>>]
éy) =c(yy " (y))
where HL, = D?,(¢p,); and G{ﬂ. = Dya;j(1;, ' (y)) and (see (3.10))

Apii(t) = —2( AWy " (y))(DYy) ! Dijy, (Dipy, ) Dia(t)) — a(t) [ div(ADy) + (A, Dijy)] -

Now, as done before for h = 0, differentiating the equation (now Dy = S%k) we obtain

that Dydy solves 0 (Dytn(t)) — A(Dyon(t)) = Aka(t), where AFo can be obtained by

l



68

taking the corresponding term in (3.11). Associated with this operator, we can consider
the problem

dyw — Aw = AFa(t) in (0,00) x E
w(O) = Dk (’ﬁhﬁg) in B

%:0 in (0,00) x OE.

The function D0y, satisfies the equation and the initial condition. Notice that if k # n

also the boundary condition is satisfied since ¥p, = 0 in a neighborhood of dFE N {y €
R" |y, > 0}, in the other part of OF the operator Dy is a tangential derivative and

g% is constant for y,, = 0. Denote by S the semigroup which gives the solution of this

problem and notice that the estimates (3.1)—(3.4) hold for S(¢), see Remark 3.0.5. Then

Dkf)h(t) Dk’l)h / S t— S .A ) (315)

Differentiating (3.15) with respect to D; for any j, we have then proved that the following
holds

Dj ;o (t) = D;S(t) Dy (0 / D;S(t — s)AFa(s)ds (3.16)

Thus, as for vo(t), we have for (k,j) # (n,n)

t
||Dl%j17h(t)||L1(E) < %”Dk(ﬁhﬁa)HLl(E) +/ 7\/;2_78HA§&(5)HL1(E)(15

< il + [ 2 Ao

We now estimate D2, op,(t). Since

n

ann DY 0n(t) = Avn(t) = Y aiDYin(t) — D (Didiy) Dyin(t)

(4,5)#(n,n) ,j=1
— Z l;iDi’f}h (t) - éﬁh(t)
i=1

and since a is uniformly elliptic with ellipticity constant proportional to p, we can find
a constant ¢ (depending only on n, My, 1, 9Q) such that

R 1 /..
HD?m'Uh(t)HLl(E) = Ha(u‘lvh(t) - . .);( )a”D Uh( )—‘r
1,] n,n

— " (Dyiiy) Dyon(t) = 3 b Dybn(t) a@h(t)) ‘
ij=1 i=1

SC[ > D5 sy + 1 Avn(@)l 1 () + Do) + 80018y |-
(&:3)#(n,n)

L(B)
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Summing up, we may argue in the same way as for h = 0, and get

1 b
D20 (D)l 11 m) < ’[7 ot Min / D2 d
[D=0n(t)|| 212y < € \/i”U oY lwia(gy + ; m” u(s)|| 1 (g)ds

+ 1o (Ol

1 _ o X 1
Sc'[ﬁHuO?/JthLl(EM—/O = |D?a(s)| L1 (pyds + | ADn ()] 21 ()

where ¢/ = ¢(M, My, My, n, c2,c,). Coming back to N Uy, we obtain

1 b
||D2'Uh(t)||L1(QﬂUh) S C” {ﬁ”ugnwl,l(gm[]h) +/0 ml|D2U(S)||L1(QOUh)dS

+ 14w (®) 1200 | (3.17)

1 |
< I:\/>E||UHLI(QQU;,,) +/0 — |1 D*u(s)|| 11 (onm, ) ds + H.AUh(t)||L1(QmUh):|

where ¢ depends on M, My, My, n, ca,c,. Now, using (3.1), (3.2) and (3.8), we have

ID>u(®) L0y = 1D (D vn(®)) o1y = | Y D*on(®)l11() (3.18)
h=0 h=0

< we' LI, +/t L D2u(s) | ey ds + AU 1 o]

R OV N Y/ ) (@)

1 | 1
<c’”[—u +/ D?u(s ds + —|u },
> \/E“ HLI(Q) o \/t—isH ( )”Ll(Q) \/E” ||L1(Q)

depends on k,c”,cp,c;. Now using Gronwall’s generalized inequality (see

where ¢’

Lemma 1.5.7), we get
c

Vio

Then, by taking o = t, we get ||D?u(t)|| 11 (o) < st H|ul|1(q) for every t € (0,1). O

ID*u(t)|| L1 ) < llull L () (3.19)

3.1.1 Characterization of interpolation spaces between D(A;) and
LY(Q)
We can use Proposition 3.1.1 to characterize some interpolation spaces between D(A1)
and L'(Q).
Theorem 3.1.2. Let A; be as in Proposition 3.1.1; then for every « € (0,1/2) we have
(L1(Q), D(A1))an = W**1(Q)

where W2%! denotes the Sobolev space of fractional order (see Section A.2.1 for details).

PRrooF. It is sufficient to prove that

(L'(9), D(A1))a = (LNQ), WH(Q) N W1, (D))an
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in fact using Theorem A.2.7 we complete the proof.
First of all, let us observe that W?21((2) ﬁWi},(Q) — D(A;). Therefore, using Definition
A.2.2, we obtain

(L), WHHQ) N WL (2))a — (L), D(A1)a1.

Conversely, let ug € (L1(2), D(A1))a.1 and set for t € [0, 1]
¢
ug = ug — T(t)ug + T(t)ug = —/ A1T(s)upds + T (t)ug = vy + ve.
0

We have

t
loa sy < / JALT (o | 1 ey s
0

and since vy € W21(Q) N Wily(ﬂ), using (A.1), (3.1) and Proposition 3.1.1, we have

lvallw21(0) = IT(uoll L@y + Y I1Di;[T(#)uo = T(uo + T(uo] |1 (e)

ij=1

n 1
< colluollrr (o) + Z ||Dij/ T(s/2)A1T(s/2)uods|| L1 () + cslluollL1 (o)
t

i,7=1

1
< c{lulla + [ 5 IAT(/ 20l
t
Therefore for ¢ € [0,1], setting K (¢, ug) := K (¢, ug, L*(Q), W*1(Q) OWQL(Q)) we obtain

K(t,uo) = inlf+ gl + tlugllwz o))

wuo=ug+ug

< Mlvllzr) + tozllwz @)

t
< o [ 1T ol priards + el
0
1
+t/ 3_1||A1T(s/2)u0||L1(Q)ds)
t
On the other hand, choosing u$ = ug and u3 = 0 we get

K(t,uo) < [[uollr(q)-

Therefore
t
K(tﬂlo) < c(min(l,t)HuoHLl(Q) +/ ||A1T(S)U0|‘L1(Q)d8
0

1
+ t/ st ||A1T(s/2)u0||L1(Q)d5).
t
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Therefore for each o € (0,1) we get
/ ¢ UK (8 ug)dt < C{”UOHLl(Q) / ¢+ min(1, t)dt
0 0
+/ (t <1+a>/ | Ay (s)uo | 1 oy ds)et

/ t—/ ST AT (s)uo | 12 ey ds)et }

so that using Hardy inequalities stated in Theorem 1.5.6, we get

[ee] oo
| R < ofuoll + [ 5 IAT )0l xords )
0 0

and hence from Theorem 1.3.2 we get
(LM(9), D(A1))a,1 = (LHQ), WHQ) N W, () an

so, the result is proved. O

Using Theorem 3.1.2 we can improve the estimate of Proposition 3.1.1, under addi-
tional assumption on the initial datum; in fact, we have the following.

Proposition 3.1.3. Let Q, A, B be as in Section 2.5. Assume, in addition, c € W (Q);
then, there exist § € (1/2,1) and c4 depending on n, u, Q, Ms, cq, c1, ¢2, ¢3 ¢, such that
for every t € (0,1) and v € D(Ay) we have

| DT (tyul| 110y < callullwri(oy- (3.20)

PrROOF. We can repeat the proof of Proposition 3.1.1 until the first inequality in
(3.18), with ¢ > 0, so that we have

1 b1
D?u(t </<c"{— Ug |1, +/ D?u(s ds
|| ( )”Ll(ﬂ) = \/£|| ||VV1 1(Q) 0 \/t_is” ( )||L1(Q)
+ I Au(t) 2 o] (3.21)
Using (1.10), we get that for any «, 8 € (0,1) there is C such that
AT (t)ull pags.1) < Cllullpagen)-

By definition of interpolation, D 4(3,1) is continuously embedded in L(€2) for any 3 €
(0,1). Using the fact that D 4(a, 1) is the fractional Sobolev space W?2*1(Q) for a < 1/2
and that W11(Q) embeds in W?2%1(Q) for such «, we obtain, with constants C that may
change from a line to the other,

C
H.AT(t)uHLl(Q) SCHAT(t)UHDA(B,l) < A—atB HUHDA(a,l)

¢ c
= a8 |l w21 0) < prp—c ][ w0
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We choose then « € (0,1/2) and 8 € (0,1) is such a way that § =1 —«a+ (8 € (1/2,1),
and (3.21) becomes

C Lo
[ D*u(t)]| L1 () < tj”“o”Wl»l(Q) +/O \/ﬁ“Dzu(S)”Ll(Q)dS-

Therefore applying the Gronwall’s lemma and passing to the limit as ¢ — 0 we get
(3.20). O



Chapter 4

BV functions and parabolic
problems: the first
characterization

This chapter is entirely devoted to functions of bounded variation and sets of finite
perimeter. We have collected several results related to these functions, from the classical
ones present in literature to a new characterization of such functions. This chapter is or-
ganized as follows: in the first section we recall definitions, basic properties and classical
results for functions of bounded variation and sets of finite perimeter.

In the second one we extend classical definitions and properties to functions with pos-
sibly weighted bounded variation on  and finally, in the last section we give a first
characterization for such class of functions in terms of the short-time behavior of T'(¢).

4.1 The space BV: definitions and preliminary results

First we give a brief introduction to the definition of BV functions in non-weighted
Euclidean domains (complete discussions and proofs can be found in [5] and [20]). These
are integrable functions whose weak first-order distributional derivatives are finite Radon
measures. Throughout this chapter we denote by € a generic open set of R™. The
classical integration by parts formula shows that if f € C1(Q) and ¢ € CL(Q, R"), then

/fdiwpd:c:—/go-Dfd:c.
Q Q

The definition of Sobolev functions is based upon a generalization of the integration by
parts formula. A locally summable function g : © — R™ is called a weak derivative of f

73
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if for all ¢ € C(Q,R"),

/fdiwpdx:—/gwgdx.
Q Q

If |g| is integrable, then f belongs to the Sobolev space W1 (£).

Definition 4.1.1. Let f € L'(Q); we say that f is a function of bounded variation in
if there exists a vector-valued Radon measure py = (u}, ooy 1) on Q with || () finite
such that for all p € C(2,R™),

/Qfdiwdwz —/Qw-duf = —i/ﬂwidu?(w)- (4.1)

The vector space of all functions of bounded variation is denoted by BV ().

By (4.1) it follows that a BV function f belongs to the Sobolev space W1(Q) if and
only if p1f is absolutely continuous with respect to the Lebesgue measure on 2. In this
case iy = Vfdx (see [20, Sec 5.1]), where Vf denotes the density of u; with respect
to dx provided by the Besicovitch differentiation Theorem 1.4.10 and coincides with the
approximate gradient of uw. According to the notation adopted in the Sobolev case we
denote by D f the distributional derivative measure uy. The following proposition leads
to the current working definition for BV functions.

Proposition 4.1.2. Let f € LY(Q). Then f € BV(Q) if and only if

|IDfI(Q) = sup{/Q fdivpdx : ¢ € C;(Q,R”), lloll Loy < 1} < oo

The space BV is a Banach space if endowed with the norm

1 fllBv) = I fllLr @) + sl (2) (4.2)

but the norm-topology is too strong for many applications. Indeed, continuously differ-
entiable functions are not dense in BV (2). For example let @ :=R, f := x(1,2) € L'(R)
and consider { i} a sequence of smooth functions obtained by convolution. Then f}, does
not converge to f with respect to the norm (4.2). In fact Df is absolutely continuous
with respect the Lebesgue measure whereas Df is singular with respect the Lebesgue
measure, being D f = §; — d2 a measure concentrated on two points. Therefore

[Dfiy = DFI(Q) = [Dfel () + [DFI(Q) > [DfI(Q) = 1.
This is true because |\ — u| = || 4+ |u| for mutually singular measures A, p.
An important application of BV function theory is the study of sets of finite perimeter

introduced by R. Caccioppoli in [10]; a detailed analysis of these sets was carried on by
E. De Giorgi (see [16]) and H. Federer (see [21] and the references there).
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4.1.1 Sets of finite perimeter

Given a subset E C R", we denote by |E| its Lebesgue measure, and by H"~1(E) its
(n — 1)-dimensional Hausdorff measure.

Definition 4.1.3. Let E be a measurable subset of R™. The perimeter of E in ) is the
variation of xg in €, i.e.

P(E,Q) = sup {/ divpdz : ¢ € CH(QLR™), [l¢llp~@) < 1} . (4.3)
QNE
We say that E is a set of finite perimeter in Q if P(E,Q) < oo.

When Q@ = R", P(E,R"™) will be simply denoted by P(E). The class of sets of finite
perimeter in € contains all sets E with C! boundary inside Q such that H*~1(QNIE) <
0o. Indeed, by the Gauss-Green theorem, for these sets F we have

/ divpdx = —/ (o, vp)dH™ ! Yo € CHQ,R™) (4.4)
E OE

where vg is the inner unit normal to E. Using this formula the supremum in (4.3) can
be easily computed and it turns out that P(E,Q) = H" 1 (QNIE)

The theory of sets of finite perimeter is closely connected to the theory of BV func-
tions. First of all we notice that if £ C R™ has finite measure in §, that is xg € L'(Q),
then by Proposition 4.1.2, E has finite perimeter in €2 if and only if the characteristic
function xg belongs to BV (); in this case P(E, Q) coincides with |Dxg|(£2), the total
variation in € of the distributional derivative of xg.

The variational measure Dy g can be used to define a measure theoretic boundary de-
noted by FFE and called reduced boundary of E, defined as follows.

Definition 4.1.4. (Reduced boundary) Let E be a measurable subset of R™ with finite
perimeter in Q. We define

FE = {x € supp |[Dxg|NQ: Hé%m =vg(z), and lvp(z)| = 1} . (4.5)

The function vg : FE — S™ ! is called the generalized inner normal to E,

By the Besicovitch differentiation theorem (see Theorem 1.4.10) we know that |Dy g
is concentrated on FE and Dxg = vg|Dxg|- De Giorgi proved that FE N Q is a
countably (n — 1)- rectifiable set (i.e. FE = J,en Kn U No with H*™1(Ng) = 0 and K},
compact subsets of C! manifolds M, see Definition 1.4.14) and that

Dxg =vgH" 'LFE. (4.6)

These results imply that the classical Gauss-Green formula can be rewritten for sets of
finite perimeter in € in the form

/ divpdr = 7/ (o, vg)dH™ ! Vo € CHQ,R™M). (4.7
ENQ FE
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Observe that in (4.7) the inner normal and the boundary have to be thought in a measure
theoretic sense and not in the topological one.

Another important result due to De Giorgi is a blow-up property for points of the reduced
boundary (see [16] for the original reference).

Theorem 4.1.5. (De Giorgi) For any x € FE the following properties hold

(i) the sets B = (E —x)/p locally converge in measure in R" to the half space H,(z)
orthogonal to vg(x) and containing ve(x) as p — 0T

HVE(CE) = {y eR": <VE(.’17),y - $> > O}a

*
Wioe

(ii) L E; =5 L"LH,z) as p— 0T, i.e.

lim $(y)dy = / o(y)dy Vo € Co(RY).
QnEz H

T
p=0 vE(z)

Now we examine the density properties of sets of finite perimeter.

Definition 4.1.6. Let E be a measurable subset of R™. For every o € [0, 1] we denote
by E“ the set of points of R™ where E has density «, that is

Ea—{xGR":EllimmeQ(x)'—a}; (4.8)

The essential boundary is then defined as 0*E = R™ \ (E° U E'), i.e., the set of points
where the density of E is neither 0 nor 1.

Theorem 4.1.7. (Federer) Let E be a set of finite perimeter in Q. Then
FENQCEY?CdE and H" ' (Q\(E°UFEUEY))=0

In particular, H"~'- a.e. © € 0*E N belongs to FE.

4.2 Weighted BV functions

A natural way to extend the definition of functions of bounded variation in the
weighted Euclidean case on ) is described here. Given a symmetric positive definite
matrix P = (p;;)7;_;, and a function f € L'(Q), we define the weighted total variation,
by setting

IDflp(Q)sup{ /Q Jdivida : € CHQ R, [P~ < 1} (4.9)

and say that f has finite total weighted variation, if |Df|p(2) < 4o00. Thus, as in the
classical case we denote by BVp as the space of L! functions that have finite weighted
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total variation. Notice that if P has entries p;; € C1(£2), then the total variation can be
equivalently defined by

|Dulp(9) = sup { /Q udiv(PY2g)dz - ¢ € CHQLR™), 6]y < 1} |

Of course, if P is the identity matrix then |Df|p reduces to the classical definition of
total variation for an L' function and in this case we write f € BV (Q) and drop the P
everywhere. The space BVp(£2) turns out to be a Banach space with the norm

IfllBve = £l @) + Dflp(2).

In a similar way, a set E is said to have finite weighted perimeter if | Dy g|p(€2) < +o0.
In this case, its total variation measure is the perimeter of E and it is denoted also by
Pp(E,Q) = |Dxg|p(Q).

Henceforth, we assume that P is a symmetric p elliptic matrix i.e., there exists p > 1
such that p=1|¢]2 < (P(2)¢,€) < plé]? for all € € R™ and all z € Q. We also assume that
the coefficients p;; € C,(2), then, the seminorms |D f|(Q) and |Df|p(£2) are equivalent,
more precisely

1

N

where p is the ellipticity constant of P and this immediately implies that BV (Q2) =
BVp(Q) with equivalence of the norms.

IDfI(Q) < [Df|p(Q) < VulDfI(),

We also notice that if f is regular, then the equality
Ds1p(@) = [ 1D1(@)]pds

holds, where |Df(x)|p = |PY/2Df(x)| = (PDf(x), Df(x))"/*.

Remark 4.2.1. (Lower semicontinuity of the total variation) It is useful to notice that
|D - |p(R) is lower semicontinuous with respect to the convergence in Li (). Indeed

for any ¢ € C1(Q, R"™) with ||P~1/2¢]|o < 1 the integral / fdivey dz is continuous with
)

respect to the L'-norm of f, hence |Df|p, as the supremum of continuous functionals,
is lower semicontinuous.

As in the unweighted case, the norm topology is in some respects too strong, since
for instance smooth functions are not dense with respect to it. Nevertheless, a classical
weaker approximation result is given by the Anzellotti-Giaquinta theorem, see e.g. [5,
Theorem 3.9]. It states that for every f € BV(Q) there exists a sequence of functions
(fr)x C C*(Q) N BV(Q) such that

1F — fullr — 0, /Q IDfilde — |D|(Q):
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Such a sequence is said to converge in variation to f.
The Anzellotti-Giaquinta theorem can be adapted also to the case of weighted BV func-
tions as follows: given a matrix @, we define

Co() = {f € C™(Q) N C'(Q); (QDF,v) = 0 on 9Q} , (4.10)

and the following approximation result holds. We point out that we shall use this propo-
sition in order to approximate a function in BV () with functions in the domain of A;
which verify a condition on 9f).

Proposition 4.2.2. Let Q, P = (p;;)} ;=1 be as above, and let Q = (q;;); ;=1 be an

elliptic matriz with q;; € CL(Q). Then, for every f € BVp(QQ) there exists a sequence of
functions (fi)r C Cq(2) such that

lim If — fillorey =0, lim / D filpdz = [Df|p(Q).
k—oo k—oo Q

PRrROOF. The proof goes as the classical one, except that we have to modify the usual

approximation sequence in a neighborhood of the boundary of 2.
Fix € > 0; since f € BV (Q), there exist functions { fi }r € C°°(2) N BV (£2) such that

fe — fin LY(Q)
/Q|ka|dl’*> IDfI(Q2) as k — oo.

We can find dp > 0 such that for every 6 € (0,d0) the set Q° = {z € Q; dist(z, Q) > §}
satisfies

I el o0 <€, / |V frlde < e vk € N. (4.11)
Q\Qs

The assumption on the regularity on 02 is used to modify the approximating sequence to
make it constant in the direction Qu. Indeed, for every = € Q\ Q° there is the projection
on 00, say Pg(x), such that x may be written z = (1 —t)Pg(z) + 6tQ(Pg(x))v(Pg(z))
for some t € [0,1) (v(y) is the outer normal to dQ° in y). This is possible since the
map v : 9Q° x [0,¢) — Q, ¥(y,t) = y + tQ(y)v(y) defines, for sufficiently small ¢ > 0,
a diffeomorphism on its image, and then we can define Pg(z) = m(¢~'(x)) for any
x € (09 x [0,¢)), where 7 : 9Q° x [0,¢) — 9Q° is given by 1 (y,t) = ¥.

Let us modify the functions fj in the following way

fr(@) = { ;k(PQ(x)) ve Qé\ >
& () x € Q.

Then, choosing ¢ sufficiently small, we have that
’/ |ka|dx—/ |ka|d:z:‘ <e (4.12)
Q Q
Finally, for every T < g we can define the approximants as follows

fr(Po(x))  xe€ QJ\Q%
gi(@) =13 (pr* fr)(z) x€QF\QF
fr(z) z e Q3.
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where p, is the standard mollifier. Then gf € C(Q), (Vgf,Qv) = 0in 9Q Vk € N.
Finally with a standard procedure of diagonalization we can find a sequence {g,:(k)} -
{97} such that

lim [lg7® = £l o) < 3¢, ’/Qlwl“”ldw IDFI(Q)] < 3e.

Now, let ¢ € CH(Q,R") with ||P~1/2¢| = (o) < 1. Then taking into account (4.11) and
(4.12) we have

[ a®divedz= [ Po@)divedot [ (prx fi)dive da
Q 2\Q2 Q2\02°

+/3 frdive dx
020

< 2ellplwrs + [, (fe— Pivg do+ [ faiv do
Q2 Q

— divy dx
/Q\Q%“ fdive
< Bellellwre + [Df|p(Q)

and so
/Q|Dg,:<’“>|p dz < [Df]p() + 3¢l

This estimate and Remark 4.2.1 complete the proof. O

Remark 4.2.3. A particular case of Proposition 4.2.2 is given when Q = A; in this case
we have that C'4(Q2) C D(A;) (it is a core for Ay, i.e. it is dense in D(A;) for the graph
norm || -{|z1(q) +[|A1-[|z1(@) ), and then the weighted BV functions can be approximated
in variation via functions in the domain of the operator Aj;.

There are several other useful properties connecting BV functions to sets of finite
perimeter such as the coarea formula. Next we state a weighted version of it, a particular
case of (see [13, Lemma 2.4]). We relate the weighted variation measure of f and the
weighted perimeter of its level sets.

For f: Q) — R and ¢ € R, define

E,={xeQ: f(x) >t}
Lemma 4.2.4. If f € BV(Q), the mapping
teR— PP(Et, Q)

is L' -measurable.

PROOF. Since f € L'(2), the mapping (z,t) — xg,(z) is L™ x L!- measurable, and
thus, for each ¢ € C(£2, R"), the function

tH/XEtdngo dz
Q
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is £L1-measurable. Let D denote any countable dense subset of C1(Q, R"™). Then

t— P(E,Q) = sup{/ divp dz; ¢ € D, |p| < 1}
Ey

is £!-measurable since it is the supremum of a countable family of measurable functions.

O

Theorem 4.2.5. Let f € BV (Q). Then E; has finite perimeter for L' a.e. t € R and
D1p(@) = | Pr(E.0 (413)
Conversely, if f € L*(Q) and
/ PP(Et, Q)dt < o0
R
then f € BV (Q).
PROOF. Let ¢ € CH(Q,R"), |[P~Y2¢| 1<) < 1. Then

fdivyp dz = /
Q

- ( . dive dx) dt. (4.14)

Indeed, suppose first f > 0, so that

f(x) = /000 xg, (z) dt a.e. x € Q.

/fdlwp dac—/ (/OOOXEt dt dlvga( ) dx

= [ (] e ivpte) o) at
:/OOO</Etdivgodx>dt.

Thus

Similarly if f <0,

whence

A fdivp dz = /2 (/0 (xg, () —1) dt)divgp(x) dx

— 00
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For the general case, write f = f+ — f~ and (4.14) is proved. From (4.14) we see that

for all ¢ as above,
/ fdivpdx < / Pp(E, Q)dt.
Q R
Hence

[Dfp(€2) < /RPP(Et,Q) dt.

Now, we prove that assertion (4.13) holds for all f € BVp(2) N C>(0).

Let
m(t) ::/ |Df\pdx:/ |Df|pdx.
O\E;, {r<t}

Then the function m is non decreasing, and thus m’ exists for a.e. t € R, with

/ m/(t) dt < / |Df|p dx.
R Q
Now, fix t € R, r > 0, and define n : R — R this way:

0 ifs<t,
n(s) = ST_t ift<s<t+r,
1 ifs>t+r.

Then

(s) = 1oift<s<t+r,
" Tl 0 ifs<tors>t+r.

Hence, for all ¢ € C1(Q, R™) with |P~Y2¢|| () < 1
. 1
- [ at@diveds = [ w(G@)Dfpds=1 [ Df-pdn
Q Q " JEN\E 4,
Now,

m(t+r)m(t)1{ B }
—7“ = r L\Et+r |Df|p dI /Q\Et |Df|p dI
1

_ 7/ \Df|pda
" JENEi4r

1

7/ Df-pdr

" JEN\Ety,

- / n(f(z))dive dx
Q

\%

For those ¢ such that m/(t) exists, we then let r — 0:
m'(t) > 7/ divpodz a.e.te€R.
Ey

Taking the supremum over all ¢ as above:

Pp(E, Q) <m!(t),

(4.15)

(4.16)
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and recalling (4.16) we find

[ Pe(E) < [ IDflnds = DfIn(®).
R Q

This estimate and (4.15) complete the proof for f € BV(2) N C*°(©). Finally, fix
f € BVp(Q) and choose {f;}ren as in Proposition 4.2.2. Then

fe—f inL'(Q) as k — oo.

Define
Ef ={z eQ: fi(z)>1t}.
Now,
max{f(z),fr(z)}
/ |XEf(x)—XEt(x)|dt:/ dt = |fx(z) = f(=)],
R min{ f(x),fr(x)}
consequently

/Q i) — ()| d = /R ( /Q X (2) — x, ()] )

Since fr, — f in L'(f2), there exists a subsequence which, upon reindexing by k if
necessary, satisfies
Xpr — XB, In L'(Q), ae.tecR.

Then by the lower semicontinuity of the the total variation,
Pp(E;, Q) < 1ikxgi£f7>p(Ef, Q).
Thus Fatou’s Lemma implies
/RPp(Et,Q) dt < likrgior.}pr(Ef, Q)

= kIE{.lJka\P(Q)
= |Df|p(Q)

This calculation and (4.15) complete the proof. O

Remark 4.2.6. The coarea formula is true for Borel sets. If f € BV () the set E; has
finite perimeter for £'-a.e. t € R and

DfI(B) = /R Dxe|(B)dt,  Df(B) = /R Dyp, (B) dt
for any Borel set B C Q.

For the weighted total variation also the following continuity property under uniform
convergence holds.
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Proposition 4.2.7. Let P = (pz-j)?’j:l be a symmetric p-elliptic matriz valued function
and let (P )ren be a sequence of matrices valued functions uniformly convergent to P.
Then, for every f € LY(Q) the following holds:

lim |Dfl|py, () = [Df|p(). (4.17)

k—+

ProOOF. We denote by ¢, = ||P~1/2 - (_)1 /2|| o; by the uniform convergence, we have
that ¢ — 0 as k — +00; moreover, we may assume that the P are (u + 1/k)-elliptic,
that is

2 « 1/2 2 2
u+1/k‘§| > |P(k) fl (N+1/k)|€|

or, simply defining w = P(lk/)Qf ,

1
TR < 1P V2wl < v+ 17k,

Then, if ¥ € C(Q, R") with | P/ $l|oc <1, we get

_ 1/2 — 1/2
1P~ e < (1P 2]l + 1(P™% = Py )doe
—1/2
<Py lloe + ekl oo

—1 —1/2
<Py llse + /i + 17K Py ¥l
<14 cpv/p+1/k.

By definition of weighted variation, we get

/Qfdivz/;dx < (1+cp/u+ 1/E)|Df|p()

whence
[Dflpy, () < 1+ e/ i+ 1/E)[Dfp().
With a similar computation, we also get

|Df|P(Q) < (1 + ck\/ﬁ)‘DﬂP(k)(Q)?

and then (4.17) follows by letting k — +oo. O

4.3 A first characterization of BV functions

In this last section we show some connections between the total variation of a generic
function ug € L' and the short time behavior of the solution of a parabolic problem with
initial datum ug. More precisely we connect the total variation of ug to the L' norm of
the gradient of such solution. This result is strictly linked with the original definition
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given by E. De Giorgi [15] of functions of bounded variation which is recalled in the
following paragraph.

Consider the heat semigroup (W (t))¢>o in R™. We show how it is linked to the
definition of function with bounded variation originally given by De Giorgi (see [15]).
For a given function f € L'(R™), we consider the function

WS w) = G [ s vae T ay

2
_ 1 _\z;gﬁd
_W - f(y)e boay
= (Ge = f)(x)

where G¢(z) = (47rt)*”/26*|$|2/4t denotes the Gauss-Weierstrass kernel. By using simple
tools of analysis one can easily prove that W (¢) f(z) — f(x) almost everywhere and also
in L'(R™) as t — 0%. The operator W (t) is also contractive, thus ||[W(¢)f||p1mn) <
[ fll:(gny for any f € L*(R™) and any t > 0. Moreover, if the function g is regular,
then DW (t)g(x) = W (t)Dg(z). Finally, since W(t+ s) f(z) = W(s)W(t) f(z), using the
previous property for g(z) = W (t) f(z), we get

[ ipwes9f@lde= [ WEOWON@Id < [ DWW O] ds.

n n

This computation shows that the function
t— |DW (t) f(z)| dx
R‘VL

is monotone decreasing for every f € L'(R") and then it is well defined the quantity:

Tif] = Jimy | DW (S ()| dr, (4.18)

that a priori can be finite or not. De Giorgi called Z[f] the total variation of f in R"
and he defined the space BV (R™) as the space of functions such that Z[f] < co.

In Theorem 4.3.4 we prove that (4.18) still holds in €2, when the left hand side reduces
to (4.3) and T'(t) is the semigroup generated by the second order uniformly elliptic
operator (A1, D(A1)). More in detail we prove that

| Dug|p(2) = 7}irr(l)/ | DT (t)uo|p dx, (4.19)
—0Jq
for every ug € LY(Q), where |D - |p(£2) is defined in (4.9).
Remark 4.3.1. Notice that, since (T'(¢));>0 is a strongly continuous semigroup on

L'(Q), then by the lower semicontinuity of the total variation with respect to the L!
convergence we obtain

|Dug|p(2) < lirtniélf/ | DT (t)uo| pdex (4.20)
-0 Jo
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for every ug in L(€2). Therefore in order to prove (4.19) it is sufficient to prove

1imsup/ |DT (t)uo|p dz < |Dug|p ().
Q

t—0

Now observe that, for functions in the domain of the operator A, (4.19) is true. Ac-
tually for these functions the result is stronger than (4.19), indeed the following equality
holds

}Ln% | DT (t)ug — Duol| 1 () = 0.

This can be easily seen if we take into account that, by Remark 3.0.6, D(A;) is continu-
ously embedded in W11(Q), i.e., there exists k = k(2, u, My) > 0 such that ug € D(A;)
implies uy € W1(Q) and

[uollwrr ) < E(l[uollLr @) + [lAruoll L1 (@) (4.21)
Furthermore T'(t)Ajug = AT (t)up and by the strong continuity of 7'(t) in L'(Q) we get

| DT (t)uo — Duol| L1 (q)

IN

k(1T (t)uo — uoll 1) + 1A T ()uo — Aruol| L))
= k(|T(#)uo —uollrr(o) + T (t) Aruo — Aruol 11 (a)) -

Example 1. Another simple case in which the existence of the limit as ¢ — 0 of
| DT (t)uo(x)| dx is guaranteed is when € is convex and A = P = I, B = ¢ = 0,

i.g., (T'(t))e>0 is the heat semigroup generated by the Neumann Laplacian and the to-
tal variation is the classical (non-weighted) one. In this case, it is easily seen that
F(t) = ||DT'(t)ugl| 1 (q) is decreasing (as is the case if Q = R™), provided that Q is con-
vex. In fact, in this case computations significantly simplify and go as follows, where we

set u(t,x) = (T'(t)uo)(z) and F(t) = /Q | Dul dz,

1 1
F'(t) = /Qat|Du| dr = /Q m(Du, Doyuy dx = /Q mZDiuDiDzku dx
ik

1 D;u
—— N " D,uD? d ”—1—/ Dr——D?ud
| Duj 2 DrvDicwn = |3 Dy D de

= —/ L<D1/Du Du) dH™ ! +/ 1 “DQUDU . Tr (D2u)2] dr <0
a0 | Dul 7 o |Dul |Dul -

where we have taken into account the Neumann boundary conditions and the fact that
if O is convex then all the curvatures (i.e., the eigenvalues of the matrix Dv) are non-
negative. This estimate and (4.20) allow us to conclude.

The monotonicity is not true in general also when A = A; if € is not convex F' may not
be non-increasing. In [22, Theorem 2.16] there is an example with €2 non convex and
F'(0) > 0.

Before stating the main result, we recall an useful boundary trace theorem whose
proof can be found in [1, Theorem 5.3.6].
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Theorem 4.3.2. Let Q be an open subset of R"™ with uniformly C? boundary; then
the trace operator is continuous from W11(Q) onto L'(02, H" 1), that is, there exists
cq > 0 such that for every u € WH1(Q) the trace v = upq of u on 0N is well defined
and

vl a0,1n—1) < callullwriq)- (4.22)

The following result is a monotonicity estimate for F'(t) = / | DT (t)up|dx and gives
Q

a localized version of (4.19). Here we assume stronger regularity conditions on the coef-
ficient ¢ and recall that

My = max{[|A|2,c0, | Bll2,00, ll€l[1,00 }-

Without loss of generality, in what follows we take for simplicity the same ellipticity
constant p both for the matrix of the coefficients A of A and P.

Proposition 4.3.3. Let v € D(A;), where A is as in (2.106)-(2.108), with coefficients
ce Whe(Q). Let P = (pi;)}j—; be a non-negative p-elliptic matriz with p;; € WhH>(Q)
and pi; = a;; on Q. Then for every n € CE(Q), n non-negative, there exists a constant

Cs = 05(’”’7 Qa M27 ||P||1,oo7 ||7]||W1,00,,U)
such that

/77|DT(t)v|pdx§/n\Dv|pdx+c5t1_5||v\|W1,1(Q) (4.23)
Q Q

holds for every t € (0,1), where § € (1/2,1) is the parameter in (3.20).

PROOF. For v € D(4;) and n € C}(Q), n > 0, we define the function F), : (0,1) —» R
by

Fyt) = /Q D\ DT (t)o] p d.

This function is differentiable since T'(t)v is regular for every ¢ > 0 and the equality

8|DT(t)v|p = (PDT (t)v, DAT (t)v)

1
|DT (t)v[p

holds for a.e. x € 2. Moreover, T'(t)v € D(A;) for every ¢ > 0 and then
AT (E = T(E)A T(f) :
1 v = B 1 B v;
this implies also that A,T(t)v € D(A;). Then, thanks to (4.21) and from the fact that

((PDT(t)v, DAIT(t)0)]
|DT'(t)v|p

< |DA,T(t)v|p,
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we can differentiate under the integral sign. Denoting by u(¢, ) the solution (T'(¢)v)(x),

we obtain
Fi(t) = d |Dulp da = / (PDu, DAu) dx
TS [Dulp
_ Z / p”D uD Dh(athku)) d
= T
ijih k=1 |Dulp
pijDjuD;(bpDpu) / pijDjuD;(cu) uD;(cu)
+ / d + dz
i ]%: 1 |D’LL| ij:l |Du|p
(Il) _ Z / psz U ZhathkU + Dhah,kDikU + Diathiku) du
i,5,h,k=1 Q |DU|P
(I2) + Z / \D i ——pi;Djuan D} u do
i,5,h, k=1 u
(Is) + Z / wa u(D by Dy + thlhu) dx
i,5,h, k=1

(14) + Z /7] p”D u(Dcu+cDu>d

i,5,h,k=1

Notice that there is a constant k = k(n, Ma, |9z, || P|lc) such that
L]+ 3] + [La] < Ellullw21(q) -

It remains to estimate Io; integrating by parts with respect to xx, we have that

Z /|Du| Di; D; wane D3 udx

i,5,h,k=1
1
(IL) = 3 Z / Dull i Djuany D3 uDypm DimuDyu d
i,7,h,k,l,m=1
(I1) + Z / Duls ————pi; Djuany D31 pm DyuDiyu dx
i,5,h,k,l,m=1
(II3) Z / D (kawD wapg + pi; Dj uDkahk> mudm
i,5,h,k=1 | U|
(114) Z / pUDk]uathmudx
i,5,h,k=1 |D |
(115) Z / D pUD uathmuDkndx
i,5,h,k=1 2 | u|
n— 1
(I16) + Z /Q |Du\pp”D uapy D3y, dH

i,7,h, k=1
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This implies the existence of a constant k = k(Mq, || P||1,00, [|7]/1,00), such that
|TT,| + |I13| + |II5] gk/Q\DQu|dx.
where M; was so defined
My = max{|laijwe.o (), [bill w2 @), lell L= @)}

Notice that for 115 we have
Z piijuath?huplmDmuDzlu = <D2uAD2u PDu, PDu>
i,j,k,l,m=1

- <P1/2D2u A D%y PY2(P'/2Dy), P1/2Du>,

and for I, we can write

n

n
2 2
E pijDijuansDiju = E plmpmJDk]u ath
ijih k=1 ij.hk;m=1

- Tr (P1/2D2u A D%y P1/2>,

where Tr denotes the trace of a matrix. Then

1 PY2Dy PY2Dy
IL+1I, = / (<P1/2D2uAD2 pl/2 >
? ! o |Dulp |Dulp * |Dulp
Tr <P1/2D2uAD2u Pl/z)) ndr <0 (4.24)

since P'/2D?u A D?u P'/? is positive definite because
<(P1/2D2uAD2u P1/2)§,§> _ <A1/2D2u PY2¢ AV2D2y P1/2§>.
Finally, for the term IIg, we notice that

n
Y piDjuanDiuv, = Z( Z ank Diu vy, ZpUD u)

W4 hok=1 i=1  h,k=1
= Z Z (Di (athhU Vk) - DhUDi(athk)> ZPUDJ'“ (4.25)
i=1 h,k=1 J=1
= (D{ADu,v), PDu) — (D(Av)Du, PDu) = —(D(Av)Du, PDu)
since P = A on 9f). Observe that the regularity of the boundary and the ellipticity of a;;

imply that there exists a constant ¢ depending on ||Alj1,0c and L (see Definition 1.5.1)
such that |D(Av)| < ¢. As a consequence, we obtain that

———npiDjuanDiuvy dH™ 1‘
z]hzl; 1/6Q |D’LL| 7

= ‘/ D(Av)Du, PDu) dH"~ 1‘ <k/ n|Du|pdH™ !
2Q |DU|P o0

IN

il | Dular=" < [ [1Dul + Dl da
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where k = k(Ms, L, u, |||, cq), and cq is introduced in (4.22).

Taking now into account that u(¢,z) satisfies (3.4) and (3.20), we have proved there
is a constant c5 such that for every t € (0,1) the inequality

d _
F(t) = a/ nDulp dz < c5t™°[[v]lwia (o).
Q

holds. Then, by integration (4.23) follows. O

In the following theorem we show the announced characterization of the space BV (€2)
in terms of the short-time behavior of || DT (t)ug|| .1 (q), analogous to (4.18). Here we may
relax the regularity assumption on the coefficients b; according to Remark 3.0.6.

Theorem 4.3.4. Assume Q C R"™ has uniformly C? boundary. Let A be as in Section
2.5 with

0y €WPS(Q), b L¥(Q)
and P be a non negative p-elliptic matriz with p;; € Cy(Q). If (T(t))i>0 is the semigroup
generated by (A1, D(Ay)) in LY(2), then, for every ug € L*(S2), the equality

lim |DT(t)uO($)|p dx = ‘DUO|p(Q)

t—0 Q

holds. In particular, ug belongs to BV (Q) if and only if the above limit is finite.

PROOF. We start first assuming that p;; € CZ(2) and considering the operator
A = div(ADu), i.e., b; = ¢ =0, i =1,...n. We denote by (A;, D(A,)) its realization in
L' (as specified in Section 2.5) and by 7' the generated semigroup. Thanks to (4.20), we
have only to prove that

limsup/Q | DT (t)uo ()| p dz < |Duo|p(2), (4.26)

t—0

which is trivially satisfied if ug € L1(Q)\ BV (£2). We then consider ug € BV (). Fix
e > 0 and consider two open neighborhoods U C V of 99 with disjoint boundaries such
that, if we take S’ = QNU and S = QNV, we get

| Dug|p(S) < €. (4.27)
Let then € C%(Q) be a function such that
0<n<1l, n=1lonsS, n=00nQ\S

and define the matrix
Py=n*A+ (1 -1nHP.
By Proposition 4.2.2 there exists a sequence
(ur)i C {v € C™(Q)NCH(Q) : (ADv,v) =0 on 9N}
={veC®(NC'(Q): (PaDv,v) =0 on 9Q} C D(A;)
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such that uy — ug in L'(Q) and

lim /|Duk|pdx:|Du0\p(Q).
k— 400 Q

Notice that since P is p-elliptic we get

/ |Dug|dz < \/ﬁ/ |Duy| pdx
Q Q
and then there exists M > 0 such that
[uk w1 < M. (4.28)

Since Q2 \ S is an open set, by lower semicontinuity we have

|[Dug|p(2\ S) < hm inf | Dug,| pdz
k—-+o0 Q\S

S Q Q\S

limsup/\Duk|pd:ﬂ< hm /|Duk|pdac—hm1nf/ |Duy| pdx
k—o00 o\S

and also

whence

< [Dug|p(R2) — [Duo|p(Q\ §) = |Duo|p(S5).

This proves that

limsup/ |Duy|pdz < |Dug|p(S); (4.29)
k—+4oco0 JS

by the p-ellipticity of A and P, we get that |{|4 < \/i|¢|p therefore the following holds:

limsup [ |Dug|adz = limsup/ (ADuy, Dug)?dx < ulimsup/ | Duy | pde,
k—+o00 JS k—+o0 J§ k—+oco JS

whence by (4.29) and (4.27)

limsup/ |Dug|adz < pe. (4.30)
k—-4o0 JS

We also notice that

€13 = (PE, &) = (Pa&, &) + (P — Pa)&.€)
= (Pa&,&) +n* (P — A)&, &) = €3, +n* (P — A)E,€)

and, since P and A are p-elliptic,

(P — A, €)] < 2ul€)® <2u°|¢)5, VEER™
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We have then obtained that |¢|p < [£]p, + 1v/27[€]4 and as a consequence

/ | DT (t)ug| pda < / | DT (t)ug| p, dz + pv/2 / n| DT (t)u| ad.
Q Q Q

We can apply Proposition 4.3.3 to both terms in the right hand side in order to obtain,
using (4.28), that

/ |DT(t>uk|de} < / |Duk|pAdl‘ + M\/i/ 77|Duk|Adl‘ +(1+ M\/§)05Mt1_6.
Q Q Q

By definition of P4, we have that

€3, = n?leld + (1L — )¢}, VEER™,

and then
/|Duk|pAd$ S/U|Duk‘AdJJ + /\/ 1 — n?|Dug|pdx §/|Duk‘Ad$ + / |Duy| pdz.
Q Q Q S Q

We have then obtained the following estimate
/ |DT (t)ug| pda < / | Dug | pdz + (14 pv/2) / |Dug| adz + (14 pv/2)es Mt 0. (4.31)
Q Q s
Using (4.30), (4.31) and the fact that T(t)ux — T'(t)ug in L*(2) as n — 400, we get

/ |DT (t)ug| pda: §liminf/ |DT(t)uk|pdx§Iimsup/ | DT (t)uy,| pda
Q k=00 Jo k—+o0 JQ

< |Duo|p(Q) + p(1 + pv2)e + (1 + pV2)es Mt —°

and the result for P regular then follows by letting t — 0, since ¢ is arbitrary. The case

with p;; € Cp(Q) is a consequence of the approximation result given in Proposition 4.2.7.

Finally, we consider non zero coefficients b; and ¢ and Au = div(ADu)+ (B, Du) + cu
with b;,¢c € L*°(Q), i = 1,...n. Notice that the boundary operators associated with A;
and A; as in (2.110) coincide, and then the set C4(Q) defined in (4.10) is a core both
for (A1, D(A;)) and (A, D(A;)). We denote by (T'(t));>0 the semigroup generated by
(A1, D(A;)). Notice that if we define @(t) := T'(t)ug and u = T(t)uo, with ug € Ca (),
the function w := @ — u is the solution of the problem

Ow — Aw = &4 := —(B,Du) — ctii  in (0,00) x
w(0) =0 in
(ADw,v) =0 in (0,00) x Q.

¢
Thus, since w(t) = / T(t — s)Eu(s)ds, we get
0

Dw(t) = D(t —u)(t) = /0 DT (t — s)Eu(s)ds
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and then using (3.4)

t
||DT(t)u0 — DT(t)u0||L1(Q) < CQHET(t)UOHLl(Q)/ ds (432)

1
0 \/t — S
< 2c0Vt (I1Blloo | DT (t)uo | 110y + llelloc |1 T () ol 12 0))

Since ||T(t)u0\|L1(Q) — |Juollz1 (o) and limsup, g ||DT(t)u0||L1(Q) is bounded we can
conclude that lim; .o || DT'(t)ug — DT'(t)ugl|r1 (o) = 0 and consequently, for v € C4(Q2),
it follows

limsup/ | DT (t)v|p dx < limsup/ |DT(t)v|p dzx
t—0 Q t—0 Q

+lim/ |DT(t)v7DT(t)v|pdx:/ |Dvl|p da.
t—0 Q Q

The thesis then follows from the density of C4(Q2) in BVp(Q2) (see Proposition 4.2.2);
given ug € BVp(Q2), we take a sequence (uy) C C4(€2) approximating ug in P-variation.
Then, using (4.32) with wuy in place of ug and (4.31), we get

/Q |DT (t)uy| pdz < /Q |DT (t)uy| pda + /Q |DT(t)uy, — DT (t)uy| pda
<(1-+ 20VF|Bll) [ Do
+(1—&—/m/g)(l+202u\/75||B||oo)/S|Duk|Adx
+ (14 uvV2) (1 + 2copVt]| Blloo)es MY + 2¢5 /it | ¢ oo /Q |7 (t)u|da
and consequently it follows
|[Dug|p(2) < hﬁ{%lf/g | DT (t)ug| pdz < lim sup limsup/Q | DT (t)uy| pdx

t—0 k—-+oco
<Timsup {(1+ 262uv/E| Blloo) Do p(9) + (1 + 1v/2)(1 + 265/ Bl )
t—0

+ (14 pV2)(L + 2eanVE| Bloo)es M + ey v/ el o= ol s }
—[Duo| () + (1 + pv/2)e

The result then follows since € is arbitrary. O



Chapter 5

BV functions and parabolic
problems: the second
characterization

In this chapter we present a second characterization of BV functions obtained using
in a different way the semigroup 7'(¢) generated by the L' realization of

A= Z Di(aij (x)Dj) + Z bl(l‘)Dl + C(.I?) (51)
i,j=1 i=1
with coefficients
ai; € WQ’OO(Q) b;, c € LOO(Q> (52)
satisfying (2.107) and with homogeneous boundary condition given by B in (2.5); in that
case, it is possible to associate a positive function p(¢,z,y) € C}((0,00) x Q x Q) to the
semigroup T'(¢) (see [45, Sections 5.3, 5.4] for more details) generated by (A;, D(A1))
and the following representation holds

(T(t)uo) () = / Pt y)uo(y) dy. (5.3)

This function p(t,z,y) is called the kernel of T'(¢t) and this formula is a keystone for
proving some interesting relations between BV functions and solutions of parabolic ini-
tial boundary value problems; more precisely, in the spirit of [33], we give a complete
characterization of sets of finite perimeter and then, using it in connection with the
coarea formula, we prove that

VA
Dula() = Jim 3 [ [ pit.a,)lu@) = ulw) dyd (5.9

where |Du|4 denotes the A-weighted total variation of u. This characterization is analo-
gous to some results in [8], [14] and [27], [33], where general kernels depending on |z — y|
are considered.

93
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5.1 The heat kernel in R"

In [27], Ledoux investigated in a different perspective some connections between the
heat semigroup (W (t));>0 on L*(R™) and the isoperimetric inequality.
We recall that the classical isoperimetric inequality in R™ states that among all subset
E C R™ with fixed volume and smooth boundary, Fuclidean balls minimize the surface
measure of the boundary. In [27] Ledoux observed that the L?— inequality for the Gauss-
Weiesrstrass semigroup in R"

IW(t)xEel2@®e) < IW(Et)xsllL2@m t>0 (5.5)

for sets E with smooth boundary and with |E| = |B| can be used to prove the isoperi-
metric inequality. In order to reach this, he provided an estimate for the L? norm of
W (t)xE in terms of the perimeter of F in R™. We refer to [27, Proposition 1.1] for the
proof.

Proposition 5.1.1 (Ledoux). For every subset E of finite measure in R™ and smooth
boundary OF and for every t > 0, the inequality

[ Wsta <[ Lpm) 59

holds.

Moreover, if B is an Euclidean ball, he checked that

lim \/? . W(t)xp(z)dx = P(B). (5.7)

t—0 t

Finally if |E| = | B|, then the L?- inequality (5.5) is equivalent to the following
. W(t)xe(x)ds > . W(t)xp(x)dz. (5.8)
This is easy to see; in fact,
[ W@ dr= [ WOxs@e @)

= W(t)xe(z)(l — xg(x))de
R

= [ Wns@de - [ WHxs@)xs()de
R™ R”

— W (E)xellr ey — /R W (/2)x5(2)W (t/2) x5 () d
= [IxellLi@n) — IW(t/2)XEl L2(r7)
> [IxBllor @) — IW(t/2)xBl L2R")

= [ W(t)xs(z)d,
Be
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whence

W(t)xe(z)dx > W (t)xp(z)dx.
Ee Be

Putting all these results together it is easy to prove that (5.5) implies the isoperimetric
inequality. Indeed, under properties (5.6)-(5.8), for every t > 0

P(E) > \/f . W(t)xg(z)dx > \/f . W (t)xp(x)dx
(B)

and ast — 0, P(E) > P
Notice that the reverse of the Ledoux result is due to the following Riesz-Sobolev in-
equality (see [28, Theorem 3.7]):

/ f(@)g(x — y)h(y)dzdy < / [ (@)g" (x — y)h* (y)dzdy. (5.9)
R” xR" R xR"

where f*, g*, h* denote respectively the spherical symmetrization of f, g, h. Now, taking
f=h=xg and g = g* = G¢(-) (where G¢(z) denotes the heat kernel in R") in (5.9), so
that f* = h* = xp, the inequality (5.5) follows immediately:

W (Oxeli@ey = R’W(Qt)XE(w)XE(x)dx

/ Gar(x — y)xe(z)xe(y)dedy
R xR™

IN

/ Gat(z — y)xB(x)xB(y)dedy
R xR

X W (2t)xp(2)xp(x)dzr = |[W(t)xB[72@mn

Thus we can state the following equivalence.

Theorem 5.1.2. Let E, B be subset of R™ with |E| = |B|, B an Euclidean ball. Then

P(E) > P(B) e HW(t)XEHLZ(R") < ||W(t)XBHL2(R") fOT’ all t > 0. (510)

An immediate interpretation of (5.10) can be deduced by taking into account that
in our assumption, (5.5) is equivalent to (5.8) and that [,. W (t)xe(x) dz measures the
amount of heat that is outside the set E at time ¢ > 0. Therefore (5.10) tells that among
all reqular sets of the same volume and at the same initial temperature, the Fuclidean
ball (having minimum perimeter) is that which minimizes the heat outflow.

In [33], formula (5.7) has been generalized to all sets of finite perimeter. The proof
of such result is based upon the measure-theoretic properties of the reduced boundary.
Moreover, in [33] it is also proved that the finiteness of the limit on the left hand side
characterizes sets of finite perimeter.

Let us point out that the same characterization of finite perimeter sets is also proved,
following a different approach based on the study of behavior of the difference quotient
of u, in the papers [8], [14], [36], where convolution kernels more general than the Gauss-
Weierstrass one are considered. In [33] the following theorem is proved.
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Theorem 5.1.3. Let E, F C R™ be sets of finite perimeter. Then the following equality
holds:

lim ﬁL(XE(m) —W(t)xe(z)) de = / ve(z) - vp(x)dH" (2). (5.11)

=0 FENFF

PROOF. Since .
W(t)xe — xg = / AW (s)xrds,
0
we have

/F(W(t)xE XE)dI/Ot/F(AW(s)XE)dxds.

Moreover, by (4.6), integrating by parts we obtain

/ AW(s)xp)dr = [ AW()xs@)yr(@de=— [ DaW(s)xs(e)- dDxr(z)
F R» R

- D, W (s)xe(z) - vp(z)dH" " (2).
FF

Notice that, if we define for every x € FE and s > 0 the measures

n E—-xz
d,us,z—ﬁ L(\/§>7

y—x
and set z = =———, we have

NG

lz—y|? Jz—y|?
e 4s (:E—y) e~ 1=
o e—l2I?/4 ;
T s Je (At
1 o 121%/4

dpts o (2).
35 Jun (AW (?)
Moreover, setting, for every z € FE,
Hypy={2z€R": z-vp(z) > 0},

the existence of the approximate tangent plane for x € FE, see (4.1.5), implies that the
measures [t . are locally weakly® convergent as s — 0 to the measure

0 if v € E°,
e =14 L7 ifx e B,
EnLH,,E(w) ifx € FE.

Moreover for every € > 0 we can find a compact set K C R™ such that

), ) dsl) @ )
2 VFp\X) 77— 75 Qs z(Z <eg, / 2 Vp(T)——Faus(2) <&
R"\K (471')”/2 R"\K (47T)n/2
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hence, since y, , are locally weakly* convergent as s — 0 to ji,

. o—l2l?/4 o122/
ll_r% - z- up(m)Wdus’m(z) = /n z- Z/F(x)wdum. (5.12)

Summing up, we can write

T — f n—1
\/Z/F(XE—W(t)XE)d e J/ NG g(z,8) ds dH"'(z), (5.13)
where g : FF x (0,t) is given by

o= [ et
and by (5.12) we have

/ Iz z/p(x)eflzl2/4dz forx e FENFF
Hy g ()

0 formE(EOUEl)ﬁ}'F,

lim g(z,s) =

s—0t

where EY, E! are defined according to (4.8). This implies that for all € > 0 there exists
to > 0 such that if ¢ < tg and = € (E° U E') N FF, then

ds = 2¢.

1 [
7 mmee ez [
Viho 275 =Vid 5
Now, by Theorem 4.1.7, we have that H"~1(9*E \ FE) = 0, then the right hand side of
(5.13) reduces to the integral on FE N FF and we obtain that there exists

: T _ — o217 /4 n—1
gm\ﬂ Joe-wonde = [ [ @ s o)

Hy g2

(47) n/2 /J-‘Em}‘F/ ~vp(2))(z- VE(I))€7|Z| M dzdH™ 1 (z)

”E(T)

= / ve(z) - vp(x)dH" (),
FENFF
because vp(z) = (vg(z) - vr(x))ve(z) for H" l-ae. 2 € FENFF and

/ z- VE(m)e*‘Z|2/4dz = 2(47)(n—1)/2 Ve FE.
H

v (z)

O

Remark 5.1.4. Notice that if | '\ E| = 0 in the preceding statement, then vg(z) = vp(z)
for H" '-a.e. x € FE N FF, hence the equality

%in[l)\/>/ (xg —W(t)xg)de =H""Y(FENFF) (5.14)

holds.
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As a special case, we may take E = F' in the above theorem, and obtain the following
result, which generalizes formula (5.7).

Theorem 5.1.5. Let E C R™ be a set of finite perimeter; then the following equality
holds
lim /> [ W(t)xede =P(E). (5.15)
t—0 t Ec

PROOF. Since |W(t)xk| 11 (r») = |E| for all t > 0, we obtain

/ (x — W(t)x) di = / (xi = W) — xpe)de = [ W(t)xs da
E n Ec

and the assertion follows inserting F' = E in (5.14). O

A sort of reverse implication is also stated.

Theorem 5.1.6. Let E C R™ be a set such that either E or E° has finite measure, and
li f— W(t dx < .
im in \[/EC (t)xE dz < 400

Then E has finite perimeter.
PROOF. Assume that |E| < +00. We can write

(W(t)xe, xBe) /n Yo (2)xE (@ + Vy)e W 4 dyda

Sis

1
(477)”/2\@/”
_ 1 e*ly\2/4/( (@) - x&() (x))dscd
(Am) 2T e PV T AR !

0 W\[/ e/ (1] - 1B 1 (2~ Viy)]) dy
1 _
1 / ‘y|e—|y\2/4 |EA(E — ﬂy)'dy
2(4m)n/2 Jra Vily| ’

where EAF = (EUF)\ (ENF) . Then, if we define

|EA(E — tv))|

D,xp| = liminf
|Dyxp| = lim in ; ,

from the previous estimate we get that

le—lvi?/a |[EA(E — Viy)|

2
lyle /4Dy 1 xeldy < liminf/ lyle dy < +o0.
/n y/lyl +—0+ R \/ﬂy|

Noticing that
_ 2
| ke Dy pxeldy = Co [ Dol
R” Sn—l
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we have proved that

/ |D,xE|ldv < +00.
Sn—1

This implies that the function v — |D,xg| is finite for a.e. v € S"~1; in particular, there
exist M > 0 and an orthonormal system of coordinates vy, ..., v, of Lebesgue points of
|D,x E| such that

Dy, x| <M, VYi=1,...,n.
Without loss of generality, we can assume that v; = e;; now, if ¢ € C}(R"), the function

¢z +te;) — ¢(x)

Pi(z) = ;

is uniformly convergent to 9;¢(x). This implies that

| xe@osws = tim [ xu@)ola)d

R"
But
/n xE(2)dy (z)d = / XE(r — tez) — XE(x)(b(x)dm,
hence
’/ xg(2)9e(2)dz| < ||¢|IOO|EA<Et—+t€i)|.

From this it follows that

|EA(E + te;)]
t
= |@llocl Dixel < M||¢]|oo-

’/n XE(7)0;¢(z)dx

< lIglloo lim inf

In the end, we have proved that
/ xe(2)div ¢(v)dr < nM||¢|ls, Vo€ CLHR™),

and then xg € BV(R"). O

In connection with these results, it seems to be interesting to pursue the investigation
of the relationships between the perimeter of a set in a domain and the short-time
behavior of the semigroup T'(t) generated by a more general operator like (A1, D(A1)).

Remark 5.1.7. In what follows Gaussian upper and lower bounds of the fundamental
solution associated with the operator 0; — A are of relevant importance. They can be
found in Appendix B and are used in a form neglecting e~*. This is not important for
our computations since we are interested in the behavior of T'(t) for small ¢, see Remark
B.2.1.



100

5.2 Preliminary results for problems in a domain

For every s > 0 and zq € (2, we set

Q—LE()
NG

and, given f : Q@ — R, f5%(y) = f(zo + /sy). With this notation, we define the
operator A%%0 on %% by

A (y)o(y) = div(A*™ (y) Du(y)) + Vs(B™ (y), Dv(y)) + sc™™ (y)v(y)

= Z ahk(xo-kx/gy)aaha 7 ( +\[Z (ZDhth x0+\fy)> =7 )

h,k=1 k=1 \h=1

Q5% —

={yeR" 12+ sy € Q}

+/5 ) bnlwo + ﬁy)%(y) + sc(zo + vsy)v(y),
h=1

and the operator A* on R™ by

n
0%v

A*v(y) = Z ahk(@w(y)-

By setting © = g + /sy, it is easily seen that A4%%°(y) = sA(x). We have the following
lemma.

Lemma 5.2.1. Setting u(t,z) = T(t)ug(x), we can define the function v : (0,4+00) X
Q%% — R by v(t,y) = u(ts, zo + v/sy); then v is the solution of the problem

Ow = A5* (y)w  in (0, +00) x Q%0
w(0,y) = uy™(y) in QO (5.16)
(A**Dw,v) =0 in (0,400) x 9Q*%0.

PROOF. By definition, we have v(0,y) = u(0,z¢ + v/sy) = uo(zo + /sy) = ug ™ (y).
Moreover, if we set © = xo + /sy, we have that 9/9y" = /50/0x" and also that the
unit outward normal to 9Q%*° at y coincides with the unit outward normal to 0f) at z;
therefore,

<As,zo(y)Dy,U(t7y), y(y)> = \/E<A(1‘)Dxu(t871‘), I/(I)> - O

In the same way, we have
Opu(t,y) = su'(ts,v0 + V/sy) = st (ts, x) = sA(z)u(ts, ) = A" (y)v(t,y),

where 1/ denotes the derivative of u with respect to its first variable, and this concludes
the proof. OIn order
to follow the computations in Section 5.1, based on the Gauss-Weierstrass kernel G we
recall that the semigroup generated by A, A%*, A®, are represented through an integral
kernel that will be introduced with a coherent notation (see e.g. [45]). We also denote
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by (T**°(t))>0 the semigroup associated with problem (5.16) and by p*®°(t,y, 2) its
kernel. We also denote by (T'%°(t));>0 the semigroup associated with the problem

{ dw(t,y) = A™(y)w(t,y) in (0,+00) x R"
w(0,y) = wo(y) in R"

and by p*(t,y, z) its kernel.
Lemma 5.2.2. For the kernels the following holds

t _ —
pt,x,y) = s~ "/217”"( it Y xo)- (5.17)

s’ Vs s

PROOF. The proof of Lemma 5.2.1 gives that v(t,y) = T5% (t)us ™ (y) = T(ts)uo(zo+
V/8y); using the kernels, we get that

t S, T — Zo
t dy =T(t =T%% | — o
| ottty = T0ula) = 7 (1) e (222
t r—=x
:/Qmo po (S,\/go,z) uo(zo + V/s2)dz
t v—=x -
_ —n/2 s,zo [ oY 0

The arbitrarity of ug gives the thesis. O

We have the following result.
Proposition 5.2.3. For every f € LY(R™), let u®(t,£) be the solution of the problem

Orw(t, &) = A>*(&w(t, §) in (0, +00) x Q%%
(A(z + /3&)Dw(t, £),vgs=(€)) =0 in (0,400) x ON5*
w(0,8) = f(§) in Q5"

and let u*(t, &) be the solution of the problem

{ dw(t,§) = A" (§w(t,§) in (0,400) x R”
w(0,8) = (&) in R" '

Then for every t > 0 we have that u®*(t,-) converges to u®(t,-) in L]

loc

(R™) as s — 0.

PROOF. We start by taking f € C.(R™) and denoting by «**(¢,£) the solution of the
problem

t
(A%F(&)Dew(t,€),v(€)) =0 in (0,400) x 0> (5.18)
w(0,8) = f(§) in Q%
Since u®* is a classical solution, for every regular function ¢ : [0,t9] x R"” — R with
©(tg, ) = 0, the following holds:

{ dw(t, €) = A*(Hw(t, €) in (0, +00) x Q7

- [ e / e o @t + o) (519)
dus(t oy Op(t
af,f[ G285 1 ot € (o) Jaear



102

Moreover, notice that sc¢** — 0, a;y — apk(x), /sby™ — 0 uniformly on compact sets
as s — 0.

As an auxiliary tool, let us use the L? theory, see e.g. [45, Section 5.4], recalling that
there is M > 0 independent of s € [0, 1], such that

[w®* ()| 2oy < M| fllz2 ey < M fllL2@n), (5.20)
M M
Dus*(t oy < 2 oy < 2 ", 5.21
[ (Ol z2(@em) < \/in”L?(Q ) < \/Z”fHL?(R ) (5.21)
and u v
| D?u* ()| p2(qer) < THfHLz(QW) < THf||L2(R")~ (5.22)

These conditions imply that for every bounded open set A € R™, t > 0 fixed and
so small enough, the family (u®%(t,-))o<s<s, is bounded in W22(A), and then, up to
subsequences, it is strongly convergent in W12(A) and also in Wh1(A).

We can now fix a countable dense set D C [0, to] in such a way that u*»* (¢, -) converges
to some g(t,-) in WhHL(A) for every t € D and some sequence s;, — 0. By (3.2) we get
that

to
(12 = e sy = | [ 00t 1)t
t1

L1(Qs:7)

to t2 1 to

S / ||A573”’u,5@(t,-)HLI(Qs,w)dt S cle”Ll(Qva)/ gdt S Cl”f”Ll(R") log 57
tl tl

that is, the function t — u*®(t,-) is continuous from (0,tg) to L!(£2%%); in particular, if
we consider t1,ty € D, then the inequality

llg(ta, ) —g(ts, Mlzray < llg(ta, ) — w™ (t2, )L (a)
+ (JuE (b, ) — w () || rcay + [[w  (t,-) — gt )l 2ray

holds and the convergence of u** on D shows that we can extend ¢ to a continuous map
from (0, ) to Li, .(R™); we also notice that by (3.4) we deduce also that g(¢,-) € Wh1(A)

loc
for every t € (0,tp). By continuity, and by the convergence of u*»*(t,-) on D we deduce

that u®®(t,-) — g(t,-) in L (R™) for every t € (0,%p). In addition, conditions (3.1)
allow us to apply the dominated convergence theorem, and then, taking the limit in
(5.19), we get

- [ r©00.0d = [ [ (0006009~ (4@)Deett.). Deg(1.)) )

for all ¢ as above, and then (see e.g. [40, Prop. 2.1, Ch. III]) ¢(¢, -) is the solution of the
problem

O (t,€) = ank(e) 5oaer (£:€)  in (0,0) x R
w(0,€) = f(€) in R"

for every f € C.(R™). Then, it follows that
90, = (0.6 = [ p(te )z,

n
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where using the Fourier transform the kernel p* is given by

. 1 (A (2)(E = 2), (€ - 2))
P68 2) = e det A2 ()] P <_ o > - 63

By the density of C, in L' we conclude. O

The following statement is an immediate consequence of Proposition 5.2.3.

Corollary 5.2.4. For every t > 0 and a.e. £ € R", the family of measures du** =
poT(t, &, )AL L Q5T is weakly* convergent to the measure du® = p*(t,&,-)dL™ as s — 0,
that is, for every o € C.(R™) the following equality holds

lim <p(z)ps’x(t,§,z)dz:/ o(2)p" (¢, &, z)dz.

s—0 Os.z n

Henceforth, given the function p(¢,&, z), we shall denote by Dip(t, &, z) the gradient
with respect to the first spatial variables £ and by Dap(t, €, z) the gradient with respect
to the second spatial variables z.

Proposition 5.2.5. For everyt > 0 and a.e. £ € R", the equality

lim [ (Dap™(t €, 2), 0(2))dz = / (Dap™ (£, €, 2), 0(2))d= (5.24)

s—0 Qs n

holds for every ¢ € L>*(R"™,R"™).

PROOF. We start by considering ¢ € C(R"™,R"); we choose sy > 0 in such a way
that supp ¢ C Q%% for all s < sp; then

| i) p@nd = - [ g sdivet)a:
and then, by Corollary 5.2.4

tim [ (Dape(6 2oz = lim = [ p (e 2)divp(z)dz
S— Qs S§— Qs,z

= f/npz(t,f,z)divgo(z)dz: /n(Dgpm(t,ﬁ,z),gﬁ(z»dz.

For an arbitrary ¢ € L*(R™, R™) we use an approximation procedure.
First of all recall that for every € > 0 we can find R > 0 and sg > 0 such that

/ |D2ps,z(t7§az)‘d2’ S g, / |D2pm(t7§72)‘d2’ S €.
Q**\Br(0) R™\Br(0)
for all s < s9. Now, let n € C2°(R"™),0 <7 <1,n7=1in Bg(0) and n = 0 in R™\ By(0),

and select € < R/2. Then . = p. * () € CZ(R",R") such that ||¢ — @ || 1o (B (0)) < €
for all 1 < p < 0o and then

/ (Dap®®(t,€, 2), p(2))dz = / (Dap®®(t,€, 2), e (2))dz
sz sz
+/ (Dap™*(t,€, 2), (¢(2) — @e(2)))dz
Q**NBR(0)

+/ (Dap™*(t,€, 2), (p(2) — = (2)))dz.
Qs*\Br(0)
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Taking into account that p*®(t, &, z) = s"/?p(ts, x + /€, x 4+ \/sz) and also that

Dop®®(t,€,2) = D.s"?p(ts,x + /5,2 + \/52)
sV Dop(ts, x + VsE,w + V/s2),

by (B.2) we obtain
|/ (Dap™(8,6,2), (p(2) = 9(2)))d3
Q7N BRr(0)
o 5 \1/2
<O = ol ([ Daplts,o+ Va4 VE)Pdz) < O
Qs.x
with C independent of s. Of course, the inequality
[ (Dap(t.6:2), (0(2) — e (o) < O
Br(0)

holds as well, and then

| [ (D62 o)z - [

s—0

<tim| [ (Dop™(1,6,2), (o(2) — 02 (=)l
Qs=NBr(0)

(Dap™(t, &, 2), <p(z)>dz‘

n

s—0

s—0

| [ (Dap™* (1,6, 2), (9(2) — 9e(2))) ]
Q==\Bg(0)

+ lim /Q (Do (0,2 el - / (Dap® (£, €, 2), oo (2)d2)

s—0 n

| [ (Dapt(t.62), (6(2) — 02
Br(0)

s—0

s—0

+ lim / (Do (1,6, 2), (9(2) — pe(2)))de] < Ce
R"\Br(0)

and the thesis follows from the arbitrariness of €. O

5.3 A second characterization of BV functions

The main step in the proof of (5.4) is the following result, where an asymptotic
formula relating two sets of finite perimeter is shown. In the statement, we assume that
E has finite measure in order to give a meaning to the left hand side in (5.27) below.
But, notice that, since E has finite perimeter in €2, then by the relative isoperimetric
inequality in the regular set )

min{|ENQ,|Q\ E|} < kP(E, Q)"

either |[EN Q| or |2\ E| is finite. Therefore, if |E N Q| is infinite, then |\ E| is finite
and (5.27) applies with Q\ E in place of E.
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Proposition 5.3.1. Assume that Q be as in (2.2). Let B be as in (2.5), and consider
Ay = div(AD), with A = (a;j);; satisfying (2.107)—(2.108); let (To(t))e>0 be the semi-
group generated by the realization of Ay in L' () with homogeneous boundary condition
Bu = 0; then, if E, FF C R™ are sets of finite perimeter in §2, the following holds

lim \/f / (e() = Tolt) i (1)) = / (A(2)vp (), vp(2) dH" ().

QNFFNFE

ProoFr. We have

| @oxe - e - /Q N / L Ty(s)xm(x)dsda

- / AoTo(s)xe(x)dads
QNF

//mFdwx 2)DaTo(s)x s (x))dads

We introduce now the kernel pg . (¢, z,y) of the semigroup generated by the adjoint op-
erator Aj of Ag; by the symmetry of the matrix A, the operator Af = Ay. In this way
we have that po(¢, z,y) = po.«(t,y, ) (see for instance [45, Theorem 5.6]) and since

3 hi7 - t77 . *t,7 hz_ *t77
szo(txy)—hm po(t,x + he;,y) po(my):hmpo,(yx+ ei) — po«(t,y, )

h—0 h h—0 h

S, ot Y—xTo x—=x he; S,T0 Yy—To T—T

gy PO e+ B (S, e, =)

h—0 h

; t y—x9 T—x

— g~ (n¥1)/2 i s.wo ( Y 0 0)

=s
2p07* 87 \/g ) \/g

where D} denotes the i-th component of the gradient with respect to the second variables.
Then for t = s and = = xq, Dpo(t,z,y) = t~"*+D/2Dypl L, y\[aj 0); hence integrating
by parts we get

/ div(AD,To(s)xe(x))dz = / (D, To(s)xe(z), A(z)ve(z))dH" ' (2)
QnF QNFF

-/ . | Das.a.). Alaywr(a) dydr @)
B /Qﬂ]-'F /QmE s_("+1)/2<D2p81f (1’ %’ 0) ,A(x)VF(x)>dde”_1(x)

1
__L / / (Dapl (1, 2,0), A(w)vr () dzdH" " (z)
Vs JanFr Jasengss '
1 S,T S, T n—
‘*/ / (Dap (1, 2,0), A(w)vi(@))dp™* ()dH " (2),  (5.25)
Vs Janrr Jrn
where we have denoted by p*® the measure
u®® =L (25T N EY). (5.26)

These measures verify the following properties:
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1. ps® =% Yios 0 if ¢ € EO;
2.yt S L0 if ¢ € B

3. us” Liog L'_H,, ) for x € FE, where H,, () = {z € R" : (z,vp(z)) < 0}.

These facts imply that, for x € EO,/ (Dapys(1,2,0), A(z)vp(x))dp** (z) — 0; indeed

’ /n <D2p(s)f:(1, 2,0),A(z)vp(x)) du* ()
S(nﬂ)/z’ / (Dapo(s, 25+ ), A(x)vp(a)) du™*(z2)

2
§01||A||oo/ e dp(2).
R’VL

Now, let € > 0 be given, we consider nn € C°(R"™) such that / (1—mn) e bl du®®(z) <

n

g, then there exists so > 0 such that if |s| < sg

/ et dpue(z) = / ne Y dpse () +/ (1 —n)e = dpse(z) <e.

Moreover, for x € E'

/ e () (Dap (12,0, Al (a)) dz = / (Daps® (1, 2,0), A()vp(z)) dz

Qs.x

v / (Dapi™(1, 2,0), A(x)vp()) dz
Q& ‘E\E.S @
Now,

/ (Dapyi(1,2,0), A(z)vp(z)) dz — A(z)vp(z) - Dapg . (1,2,0)dz =0
e R~

and for every € > 0 there exists ¢y small enough, such that for |s| < tg, by (B.2)
[ D 0d <
Qs :):\Es,:l;
therefore if x € E' and s is sufficiently small,

\[/ f Qs rAEsT <D2p(sJii(17Z’O)vA('r)VF(«T»dZ < 2e.

Now, taking into account that H"~1(9*E \ FE) = 0, we can consider only points z €
FF N FE; in this case we obtain that

[ (D120 AGwe )i (2) — [ (Dapf(1,2,0) Alwve(a)

Hyp @)
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Taking into account (5.23) and the symmetry of A, we get that

1 1 1
2amp et A7) P (AT @)% 2) 4 A7 @)z,

D2p§,*(17 2, 0) = -
and then, since for z € FF N FE we have vp(z) = (vg(x),vr(z))ve(z)

/H <D2pg,*(]—7Z,O)yA(fE)I/F((E)>dZ:

v (@)
= S AT o (A7) st
_ _<VE(-T)7;/V2F($)> / €_|Z|2<Z,A1/2($)VE($)>dZ.
T Hp172(ay0 g (o)
For the computation of this last integral, we consider an orthonormal basis {e1,...,e,}
of R™ with
_ AP (@)vp(r)
T AP @)

we then obtain

J,
n—1)/2

0 (
_ W("—l)/Q‘Al/Q(x)yE(xﬂ/ ne Fndzy, = —WT|A1/2<35)VE($)|'

<Z,A1/2(SC)I/E(IE)>67|Z|2CZZ = |A1/2(x)yE(x)|/ zne 2 dz

A/ 2(z)vp (x) Ha1/72(0p0p (@)

At the end, we have obtained that

. m .
lim \/7/ (To(t)xE — xg)dx = —/ (VE,I/F>|A1/QVE\CIH L
=0V 1 Jonr QNFFNFE
O

With a perturbation argument we establish the result stated in Proposition 5.3.1 for
the semigroup T(t) generated by the complete operator (A1, D(A1)) in L'(€2).

Theorem 5.3.2. Assume 2, B be as in Proposition 5.3.1 and let A be as in (5.1) with
coefficients satisfying (5.2). Denote by T(t) the semigroup generated by (A1, D(A1)) in
LY(Q), then, if E,F C R™ are sets of finite perimeter in Q, the following holds

tin [ [ (et = TOne@as = [ (At e ). 620

PrOOF. By using Proposition 5.3.1 and the notations fixed there, it suffices to prove
that

tim == [ (Ty(e)xe(@) = T =0 (5.28)

In order to get the claim, we set u(t,x) = (T'(t)xg)(z) and v(t,x) = (To(t)xr)(x), so
that the function z = u — v solves the problem

Oz — Az = (B, Dv) + cv t>0,2z€Q
z(0)=0 x €
(ADz,v) =0 t>0,x€ 0N
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and can be written as follows

t
"y = / T(t — 5)((B, Du(s)) + cu(s)) ds. (5.20)
0
Using (3.1) we have
t
o= vl <o [ (1B.DeD oy + ool )ds. (530
If we prove that

lu—vlpi) =o(Vt) ast—0 (5.31)

we conclude. For the last term in (5.30) we have that

/Q (@) To(s)x(2)| d: < eollc]oel N

and then

.1
tim == [ [ lete) o) e ) dods =

For the first term in (5.30), we notice that

D.po(s, z,y))dydzx

< 1Bl Bl / Dapo(s, 2, y)|da
QﬂE’

and using Gaussian estimates (B.2) we get

C
Dxp 37557?/ dmgi
[ 1Dam(s ) =

for some constant C' depending only on the operator A and the dimension n. However
we can write

/Q (B, D, Ty(s)xs)da / dz /Q (B(@). Dol )iy
] (nns o5
= \[/ d:c/Q”nE” x), Dapyi (1, 2 ,0))dz
_ \[/ dx/n ), Dap (1, 2,0) ) (2).

where p** is defined in (5.26) and satisfies 1.,2. and 3. of Proposition 5.3.1. With the
same argument previously used, we can deduce that for x € E° U E', the limit of the
above integral as t — 0 vanishes; then, taking into account that |Q\ (E° U E')| = 0, we
have then obtained that

lim — /// Dypo(s,x,y))| dydxds = 0
P2y o Jors ol

for H* !-a.a. x € E° U E'. Therefore (5.31) is proved and the proof is complete O

Specializing the above result for F' = E° we get the following
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Corollary 5.3.3. Under assumption of Theorem 5.3.1, let (T'(t))i>0 be the semigroup
generated by (Ay, D(A1)) in LY (Q); then, if E C R™ is a set with finite perimeter in ,
the following equality holds:

im (/= T = V2(2)vg(z)|dH" " (z). :

Using an argument similar to the one used in [33, Theorem 3.4] and the lower bound

for the kernel p(t, z,y), it is possible to prove the converse of the statement in Corollary
5.3.3.

Proposition 5.3.4. Let E C R" be a set such that either E or E° has finite measure
i Q, and such that

lim inf —/ T(t)xe(z)dr < 400,
t=0 EenQ

then E has finite perimeter in 2, that is xg € BV (Q).

PROOF. Define Eq := E N Q and assume |Eq| < oo. From (B.17) we have
1
77 ) TOxp@yde= | | p(tz,y)xey)xe: (@) dy dv
ﬁ Ec

L le—ul?
-ﬂn+nml/nv/n oo ) (x0 () — () dy

= % - e*cﬂzP / ) XQ(Q;')XEQ (z\/i+ 1’)(1 — XE(LZ})) dx dz

=S [ o) (i) = Xl (o) dr s

:Cl/ 67c1\z\2|z|‘(EQA(EQ 72\/{5))09‘ dz
n Vilz|
In fact, denoting by
EA(E —t Q
1D, xsl() = lin ing (EEE =) 00
t—0 t
by assumption we get that
—C1|? 2
[ el D 2 () s
< lim inf —/ y)xEe(z)p(t, x, y)dedy < +o0.
t—0 Q><Q

This implies, using an argument similar to that used in Theorem 5.1.6, that there exist
M > 0 such that |D.,xg,|(Q) < M for i =1,...,n. Finally, let ¢ € C}(2,R"); then

L ol + tes) — ()
| xe@Digt@yde = tim_ [ xo(a) : da
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But
te; €
‘/XE(x) p(x + te;) ‘_ ‘/ XEq+t XEQ(x)(p(x)dx
Q
E A FEq +te;)))NQ
< ||so||mm'( ofFo te)) 0%
Thus
EqA(E te; Q
‘/XE@?)DW(SU)W‘ < lellze () limiIlfK al(Fg +te) N4
Q t—0+ t
= ||l Lo ()| De X o [(§2) < M| Lo ()
and
| xe@ive(o) de < n gl o
that is |Dxg|(2) < +o0. O

We are now in a position to prove the main result of this section, namely, the an-
nounced characterization of BV functions (5.4). The strategy is the same as for R™ and
is based on (4.13).

Theorem 5.3.5. Let Q, A, B be as in Theorem 5.5.2, let (T'(t))i>0 be the semigroup
generated by (A1, D(Ay)) in LY(Q) and let u € L*(Q); then u € BV (Q) if and only if

hmlnf—/ (y)|p(t, z, y)dzdy < +o0;
QXQ

moreover, in this case the following equality holds

NG

Du|4(Q) = lim ~—
DU =15 7 o

lu(x) —u(y)|p(t, =, y)dxdy. (5.33)

PROOF. The “if” part. We start by considering u € L'(Q); for 7 € R we denote by
E. ={u > 7} and, since the semigroup is positive and contractive, we obtain that

0 < /hmmf T(t)xE da:d7'<hm1nf—// t)x g, dxdr
=0/t Jpeno EenQ

IN

lim inf 7 e / XE, (@) = x5 (W) |p(t, 2, y)dedydr

= hmlnf—/ lu(z) — u(y)|p(t, z,y)dzdy < +o00
QxQ

and then, thanks to Proposition 5.3.4, almost every level E, has finite perimeter and
equation (5.32) holds. Then, using coarea formula (4.13), we get

Du|A(Q) = ’PA (E;,Q)dr = hm t)x g, dzdr
|
Rt_’O ECmQ

< liminf \/7/ u(y)|p(t, z,y)dedy < +o0
t=0 QXQ

A
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that is u € BV4(9).
The other implication follows from (5.33). To prove (5.33), we define the function

_ ﬁ /E o TOxe ()i

For this function we have the following estimate

lge (T |—\/7‘// AT (s)xE, d:cds \/7‘/ (ADT(s)xE, ,ve, )dH" ™!
E(‘I'_WSZ .7:E naQ

+/Emﬂ <B7DT(S)XET>d:r+/EmQ CT(S)XET)dif)dS'

™ ! n—1
<5 [ (bl [ 10Tl
0

1Bl [ / Duple )y + el [ [ wswdsdy)as
BSn Y ErnQ

Bene Y E-nQ

<cMo(P(E», Q) + min{|E, N Q|, |ES N Q[}) = h(r)

where the last inequality follows from the estimates (B.2) on the kernel p(s,z,y). We
have that h € L*(R) since

/ P(E-, Q)dr = |Du|(£2)
R

and, denoted by u* = max{u,0} and v~ = max{—u, 0},

oo 0
/mm{|E NQ,ESNQ|}dr </ |E; ﬁQ|dT—|—/ |ES N Q|dr

/ / XE, dmd7+/ /XEcdl’dT
z// X{u>7}d7'da:—|—// X{—u>r}drdz

aJo aJo
:/quda:—l—/u*dx:/ |u|d.

Q Q Q

Then we can apply Corollary 5.3.3 and Lebesgue dominated convergence theorem to the
functions g; in order to obtain

/ Pa(Er,Q) dT— lim \/7/ t)x e, dx
Rt%(] ELQQ
. T
= im /T / / (xz. (v) — x. (W) xE, (2))p(t, 2, y) dedydr
=0V t Jr Jaxa

=t /T )~ mingu(o). @) ot )y

since xg, (¥)xEe, (z) # 0 if and only if 7 < min{u(x),u(y)}; finally, the assertion follows
by noticing that min{u(y),u(z)} = 3 (u(z) + u(y) — Ju(z) — u(y)|). O

[ Dula ()






Appendix A

A brief introduction to
interpolation theory

A.1 Interpolation spaces

This appendix is devoted to present an elementary treatment of the interpolation
theory. This theory has a wide range of applications to partial differential operators and
partial differential equations. We have used interpolation techniques in Chapter 3. In
particular, Theorem 3.1.2 relies on Theorem A.2.7 and both have been proved in [6].
The most known and useful families of interpolation spaces are the real and the complex
interpolation spaces.

Let X, Y be two real or complex Banach spaces. By X =Y we mean that X and Y
have the same elements with equivalence of the norms. By Y — X we mean that Y is
continuously embedded in X.

Suppose that Y — X; we say that D is an intermediate space between X and Y if

Y —D— X.

An interpolation space between X and Y is any intermediate space such that for every
T € L(X), whose restriction to Y belongs to £(Y"), the restriction to D belongs to L(D).
Another important class of intermediate spaces are the space of class J,.

Definition A.1.1. An intermediate space D between X and Y is said to be of class J,
if there exists a constant C' > 0 such that

lyllp < Clyllsllyllx®, yeY.

In this case we write D € J,(X,Y).

113
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A.1.1 Some interpolation estimates

In the next section some important examples of interpolatory inclusion are shown.
First we prove a useful interpolation estimate which allows us to estimate the LP norm of
the gradient of a function with respect to the LP norm of the function and of its second
derivatives. For a more general statement see [1, Theorem 4.17].

Proposition A.1.2. Let 1 < p < oo, then W'P(R") is of class Jy o between LP(R™)
and W*P(R"). In other words

1/2 1/2
1Dul| o rey < el D2ull gy lullFotreny (A1)
for u € W2P(R™) and some constant ¢ > 0.

PROOF. We first consider the one-dimensional case. Let u € C°(R) and = € R; then
for h >0

h
w(z + h) = u(z) + hu'(x) + /0 (h — s)u” (s + z)ds

hence
/ u(m + h) B u(m) 1 h "
u(x) = — _E/o (h—s)u"(s+ x)ds.

Taking the LP norm we get

2 1 [P
vl zery < 7 llullLe ) + E/o (h = s)llu" (s + )| Lo (ryds

2 h, ,
= EHUHLP(R) + 5”“ e (r)

Let ¢ = % then
1
(| rr)y < ellullLr ) + g”U”HLP(R)- (A.2)

Now, let u € C°(R™), then by (A.2) we get

1
/|Diu|pdmi§2p_1 Ep/ |Diiu\pdxi—|—f/ |ulPdx; |,
R R e? Jr

and by Fubini’s Theorem
1
/ |Diu|Pde < 2P~1 (57’/ |Dy;u|Pdx 4+ —/ |u|pdgc>
n R ep R

1
IDrallarme) < ¢ (ElDulary + Sl ocae ) (A3)

therefore

holds for every € > 0 and some constant ¢ depending only on p. Minimizing (A.3) on ¢,
we get
1/2 1/2

| Dull ey < 26| D%l Y2l 2 e

for every u € C°(R™). Finally the estimate can be extended by density to W2?(R"). O
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A.2 Real interpolation spaces

Let X,Y be Banach spaces, with Y — X (in general this is not required; however,
this simplifying assumption is satisfied in the case we are investigating). We describe
briefly the K-method used to construct a family of intermediate spaces between X and
Y, called real interpolation spaces and denoted by (X,Y)s ,, where 0 < 6 < 1 and
1 < p < oo. Let I be any interval contained in (0, +00), 1 < p < co. We denote by L (1)
the Lebesgue space LP with respect to the measure % inI. If p=oo, L) = L>=(I).
We set 1/00 = 0.

Definition A.2.1. For every x € X andt > 0, set

Ktz X)Y)= (lallx + tlolly).

inf
r=a+b,acX,bey

Now we define a family of intermediate spaces by means of the function K.
Definition A.2.2. Let 0 <6 <1,1<p< o0, set
(X,Y)op={reX:t—t Ktz X,Y) e L2(0,+o0)}
with
zllo.p = 1t~ K (¢, 2, X, Y) | £z (0, 400))

and
(X,Y)o={zeX: lim t °K(t,z,X,Y) =0}

t—0+t

Definition (A.2.2) concerns only the behavior of t =K (t,xz, X,Y) as t — 0, since
K(-,z,X,Y) is bounded. Moreover since K(t,z,X,Y) > min{l,¢}K(1,z,X,Y), for
0 =1 we deduce that

(X,Y)1, ={0}, p<oo.
Therefore, henceforth we consider the cases (6, p) € (0,1) x [1,400] and (0,p) = (1, 00).
Such spaces are called real interpolation spaces. One can prove that [|z||(x v), , is a norm
in (X,Y)s, and that the following results hold (see [31] for their proof).

Proposition A.2.3. For all (6,p) € (0,1) x [1,4+00] and (0,p) = (1,00), (X,Y ), is a
Banach space. For all 0 € (0,1), (X,Y)s is a Banach space, endowed with the norm of
(X,Y)0,00-

The spaces (X,Y)q, and (X,Y)y are of class Jp(X,Y) for every p € [1,00]. They are
actually interpolation spaces, as they enjoy the following property.
Theorem A.2.4. Let X;,Y; be Banach spaces such that Y; — X; for i = 1,2. Let
T e L(X1,X2) N L(Y1,Y2). Then for every 6 € (0,1) and p € [1, 00|, we have
T € L((X1,Y1)0,p, (X2, Y2)0,p) N L((X1,Y1)e, (X2, Y2)0)

and

1T 20 Y00 (X2 ¥2)o) < TN 2 X200,)" P U T 2viv2)0,)°
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Finally we state without proof the duality theorem for the real method. A proof of
it can be found in [46, Section 1.11.2].

Theorem A.2.5. (Dual space) Let Y dense in X. If 0 < 8 < 1 then for 1 <p < oo

1 1
(X, Y),9-,p =Y, X )10, p +— =1,

and for p = oo
(X, V) oo = (Y', X )10, (A.4)

A.2.1 Examples

We close this section with concrete examples of some interpolation spaces. For 6 €
(0,1), p € [1,00), WPP(R") is the space of all f € LP(R™) such that

[flwor = </eran Mdmdy) v < 00.

|z — y|ortn

It is endowed with the norm | - ||z» + []yye.r». When 6 > 1 is not integer, let [0] and
{6} be the integral and fractional parts of . Then W%P(R™) consists of the functions
f € Wlolp(R™) such that

> D flwiors

lee|=[0]

is finite. Analogously in this case we consider the space WP normed by

I llwiers + D [D*Jwiora-
o =1[6]

Example 2. For0 <6< 1,1<p < oo we have
(Cy(R™), Gy (R™))g,00 = Cy (R™)
(LP(R™), WP (R™))g,, = WOP(R™),
with equivalence of the respective norms.

Example 3. Let 0< 0, <6, <1,0<0<1,1<p<oo. Then
(Wel,p(Rn% W@g,p(Rn))e p= W(179)01+992,p(Rn).
If Q is an open set in R™ with uniformly C' boundary, then
(WOP(Q), W2P(Q))g 00 = W(1—0)91+9927p(9). (A.5)
Example 4. For0<6<1,1<p,q<oo, méeN,

(LP(R™), W™P(R"))g,q = Byg (R").
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Here B, (R") is the Besov space defined as follows: if s is not an integer, let [s| and
{s} be the integer and the fractional parts of s, respectively. Then B, ,(R") consists of
the functions f € WIshP(R™) such that

/
[f1B;, = Ialz—:[s} (/Rn |h|r§i+h{s}q(/Rn | D% f(x + h) — D‘lf(x)|pdx>”p)1 q

is finite. In particular, for p = q we have B, (R") = W*P(R"). If s = k € N, then
BF (R™) consists of the functions f € WF=1P(R") such that

o, = 5 ([ ([ 105+ 20 ~20% @+ + Do) as) ™"

p.q
|a|=k—1

1s finite.

For a complete proof of Examples above see [46, Sections 2.3, 2.4].

Corollary A.2.6. For 0 <0 <1/2,1<p < oo, we have
(LP(R"), W2P(R"))g,, = WP (R")

with equivalence of the respective norms.

In the following result we characterize the interpolation space between L!(Q) and a
subspace of W11(Q) which takes into account in a suitable way the boundary conditions
that are to be imposed in the parabolic of our interest.

Theorem A.2.7. Let Q be a subset of R™ with uniformly C? boundary; then for every
6 € (0,1/2) we have

(LM, WL Q) N W, (D)es = WH(Q) (A.6)

where v(x) denotes the external normal to 0Q at x, A is the matriz in (2.106) and
thlj(Q) is the closure of {u € C*(Q)|(A(z) - Vu,v(z)) = 0 for x € N} with respect to
the topology of W11(€).

PROOF. We define for an open and regular set w C R" the space
X5 (@) = (L' w), W (@) N Wa, (@))on

endowed with the norm

2 K (¢, ) _
lullxa ) = | —ve 4 K(tu) = iniu (lallLrw) +thblwz1(w) (A7)

a
acLt(w)
1,1
beWz’l(w)ﬁWA’yu(w)

We want to prove that X;'(Q) = W?2%1(Q) for 6§ € (0,1/2). For the result in the case
when w = R"™ we refer to [9, Theorem 4.3.6].
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We divide this proof in two steps, in the first one we prove that X/ (R}) = W2:1(R%),
where [ is the identity matrix. In the second one, we use a local change of coordinates
and the regularity of the domain €2 to conclude.

First step
We want to prove that

(LH(RL), WAL RE) 0 W (RI))oa = W2 (R) (A8)

where Wi,l(Rﬁ) denote the space W}ien(Ri)
Fix 6 € (0,1/2) and consider T' the operator that to any function v : R} — R associates

w(xy, ..., T,) ifz, >0

Tu=u(x) := { (A9)

w(xy,...,—xy,) ifz, <O.

As it is easily seen T € L(L'(RZ), L'(R™) N L(Wx'(RE) N W2L(RY), W2(R™));
therefore applying Theorem A.2.4 we get

T e L((LYRY), Wa (R NW2LRY))g1, (LHR™), W (R™))g,1).

As a consequence we deduce that if u € (L*'(R7), Wi,l(Ri) NW2LRY))p,1 then Tu €
W20.L(R™) con 2lullw20amy) = \|a||er,1(R1) < ||“HX91(R1)7 hence u € W21(R%).
Conversely let v € W2%1(R"); then the function @ defined in the same way of (A.9)
belongs to W?2%1(R"™); indeed

. (z) — u(y)
[U]W29,1(Rn) = /ndl‘/n Wdy

|a(z) — a(y)|
= 2fu] 201 (mo +2/ dx/ Me) — B
wEHRD) R 1xR, Rr-1xRr_ |7 — Y|t

< 4[U]W29,1(R1).

Thus, since Xp(R") = W20:L(R") for 6 € (0,1/2), there exist v; € L*(R") and vy €
W21(R") such that @ = vy +ve and t~?K(t,@) € LL(0,+00). Now, let g € C(R")
with D,,g = 0 in x,, = 0, then @ can be represented as the sum (v1 +v2 —g)+g=1w+g
with w € L'(R™), g € W2 (R"). If we consider the restriction of w and g in R'} we get
that u = @grn = wirn + grn with wirn € L'(RY), girn € W2H(RL) N Wyl (R7) and
t=K (t,u) € L1(0,+00) since K (t,u) < K(t, 1) for all t € (0,00). Thus (A.8) is proved.
Second step

Now we consider the same partition of unity {n} associated with the covering {Up}
of () considered in the proof of Proposition 3.1.1. Then, for a given function u defined in
Q, writing u as 370 uny,, we can prove that uny € Xp(Q) if and only if uny € W291(Q).
For every h > 1 we can find ¢y, : B4 (0) — Up N such that d(¢n ) (a(x)v(x)) = —en,
and prove that v, := uny, o ¢y, belongs to Xp(R'}) if and only if belongs to W29’1(R7}r),
by which um;, € Xp(Q) if and only if un, € W2%1(Q). Now in order to conclude we have
to show that u € Xg(€Q) if and only if u € W2%1(Q). Notice that the result is immediate
if © is bounded, since in that case the covering {Uy,};, is finite.
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Suppose first that u € Xp(Q). Since Xp(Q) continuously embeds in L'(Q), it is
sufficient to estimate the seminorm [u]yy 20,1 (). Moreover, since u € Xy(§2) we also have
that uny, € Xp(f2) for each h € N. Notice that, for fixed x € Uy, y € Uy there exists
I, € N such that

u(x) —uly) = Y ul@)mi(x) —uly)mi(y)

i€lpg

where either supp (;) N Uy # 0 or supp (n;) N Ug # 0. Since {Up}, has a bounded
overlapping k, then #(I;) < 2k. Then

lu(z) —u(y)| ien,, (w@)ni(z) — u(y)ni(y))]
/ y|n+29 drdy < Z /Uh dx/Uk |z — y[n 20 dy

alo lz— bkl

u(y)nm(y)|
S [ e ), S w10

Now, we define V}, = U{j:anUh#@} Uj;, then there is a constant ¢, > 0 depending only
on k, the overlapping of the U;, such that

h k=1i€ln

Yicny lunillrwy < cellullprvi,ov)
(A.11)

Sicny lunillwea @y < eaMlullwzv,uv)

where M := sup,cn ||71]2,00. Moreover we can write Q = |Ji_, ©; where Q; = {z € Q:
#{j:xeU;} =i} and Q;NQ =0 if i # k. Then

Z/Vhwk |u|dx—zz/ |u|dx

hk =17 (VaUVi)N

—ZZ/ |u|dx

i=1 h,k 7 (VaUVE)N

= Zz/ lu| dz < Kllul|L1(q)- (A.12)
i=1 Y%
Analogously,
> lullwer vuove) < Ellullwea g (A.13)

h.k

Since the functions vy, := uny, o v, belong both to (L*(R%), W*H(R}) N Wé’i(Ri))g,l
and W2%1(R"), and in RY the norms of W2%1(R") and X,(R" ) are equivalent, we get
a constant kg, depending only on the norm of the embedding of Xp(R") in W2%1(R%)
and vy, such that

u(y)mi(y)] L
/Uh dx/Uk |x7 |n+29 dy < Ko /0 751+HK(t un; )dt (A.14)
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where K is defined in (A.7). By definition of K(¢,-) and by (A.11) we get

> K(bum)= 3 inf (lallosen + s o)
1€Ihg i€lpg 1a + b~: qu 1
aeLY(Q),be W (Q)
2 *i{‘lf* (lanill oy + tlonillw=10))
i€lpg a € Ll(Q)’ be W2’1(Q)
) e > (lamillpro) + tlibnillw=10)
aGLl(Q),berl(Q) i€lng
S E B (HGHLl(V”'UVk) + tHbHW?,l(VhUVk))

at+b=u
a€ LYQ),be W(Q)

where x; depends on x and M. Summing up on h, k we get, by (A.12) and (A.13),

Z Z (t,un;) < k1 K(t,u).

h,k=11i€lny

Then by (A.10), (A.14) and using the last estimate we get

@) =)l g < Z Y ok +OOLK(t )dt
| |n+20 0 ), e » Ui

ayl<p |7 = hk=14€Ipy,
+oo 1
< Ko /<E1/0 WK(tvu)dt:"50"51||“HX9(Q)7

whence Xy(Q) C W?2%1(Q). To prove the reverse inclusion, consider {n,, Uy} as before.
First of all observe that, we can estimate for each p > 0

|u(:z:)77r$(il? mi(é/@)nh(yﬂ dudy .

C
[unnlw2e.10) < —=z5 lullerw,) +/
p lz—y|<p

where ¢ = 2|Up| is a positive constant independent on h since Uj are balls with fixed
radius. Adding and subtracting u(z)ny,(y) we can estimate

/ [u(@)nn(x) — u(y)nn(y)] dxdy
|lz—y|<p

o =y

/QXQ |: ! (nh) | r — y|n*1+20 X“h,p (x7 y) | ‘n+20 XQXUh (.’L‘ y):| dwdy

where Ay, , = (Up x QUQ x Up) N{(z,y) € AxQ : |z —y| < p}. Then, choosing p small
enough in order that the p-enlarged sets U/ have the same overlapping as the Uj,’s and
Ap,p, CUP x Uf, we get

w() — u(y)
=0y < ol wry / dy / ulz) —wlw)l
B(y,p) |z -yl

where ko depends (only) on ||n||w1.,8, p,n. Since the overlapping is bounded we can
find two constants k3, k4 such that

ZHU%HW% 1(Q) <f€3 |U||L1(Q)+/ dy/ 77%(29”(133 < Kallullwzo.1(q) -
By 1Yl
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Then for each ¢ > 0 we can find a, € L*(Q), b, € W21(Q) such that ay, + by, = un, and
||dh||L1(Q) + t||bh||W2,1(Q) < K(t,unh) + €2~". Define a = Zh ap and b = Zh bn. Then
a+b=wu and

K(t,u) <llallL1(a) + tl|bllw21() < Z |z @) + tllbnlln=1 o) < Z K(t,unp) + €
h h
and then K (t,u) < >, K(t,uny). Now, as before, since the functions vy, are in W21 (R7)
and in R", the norms of W?2%1(R") and Xy(R"}.) are equivalent, there exists a constant
ks, depending only on the norm of the embedding of W29’1(Ri) in Xg(R%) and vy,
such that

Foo u(x ) —u
/0 tli_eK(t,unh)dt</€5/de/Q ( )nfgg_)ywéygnh(y”dy. (A.15)

Therefore there is a constant kg (depending only on x4 and «5)

+oo 1 +oo 1 +oo
h=1

—+oo

< K5 Z Hunh||W29v1(Q) < K6||H||w29,1(9).
h=1

A.3 Complex interpolation spaces

The complex interpolation methods were introduced by J. L. Lions in [29], A. P.
Calderén in [11] and [12]. We shall follow the treatment of [46]. Let Y, X be complex
Banach spaces with ¥ — X and let S be the strip {z = z+iy € C: 0 < z < 1}.
By the maximum principle for holomorphic functions defined on a strip, we get that if
F : S — X is holomorphic in the interior of S, continuous and bounded in .S, then for
each z € §

1P(2)]1x < max{sup | F(it) [ x,sup [|F(1 +it)]1x ).
teR teR

Definition A.3.1. Denote by H(X,Y') the space consisting of all continuous and bounded
functions F : S — X which are holomorphic in the interior of the strip such that t —
F(it) e CR,X), t— F(1+1it) € C(R,Y) and such that

[ l2e(xvy = max{ sup [[F(it)[|x, sup [[F (L +it)[ly } < oo.
teR teR

By using the maximum principle, it is not hard to prove that H(X,Y") is a Banach
space. The complex interpolation spaces are defined by means of functions in H(X,Y).

Definition A.3.2. For every 6 € [0,1], we define

[X,Y]g={F(): FeH(X,Y)},
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with norm

= inf F
||f||[X,Y]e FGH(X}{})?F(G):J(H HH(X,Y)

That [X,Y]s is a Banach space follows from the fact that [X,Y]y is isomorphic to
the quotient space H(X,Y)/Ny where Ny is the subset of H(X,Y) consisting of the
functions which vanish at z = 6. Since Np is closed, the quotient space is a Banach space
and so is [X,Y]s. The Banach space [X, Y]y is indeed an intermediate space as the next
proposition states.

Proposition A.3.3. Let 0 € (0,1); then

Y= [X,Y]p— X.

PROOF. Let f € Y. The constant function F(z) = f belongs to H(X,Y) and

IFll7exyy = max{[[fllx, [flly} < el flly

for some ¢ > 0. Therefore f = F(0) € [X,Y]p and [/ f]/(x,y}, < clflly. The other
embedding is a consequence of the maximum principle. Indeed if f = F(0) with F' €
H(X,Y) then

1fllx < max{sup [[F(it)[|x, sup [| (1 +it) [ x }
teR teR
< cmax{sup ||F(it)||x,sup || F(1 + it)|y }
teR teR
= [ Fllnexy

so that f € X and || f|x < c|Fllncxy)- O

In general [X, Y]y does not coincide with any (X,Y)g,. If X,Y are Hilbert spaces
then the equality holds for p = 2, that is

[X,Y]p=(X,Y)po 0<6<1.

In the non Hilbertian case there are no general rules.

Two other useful facts are recalled here, one concerning the dual space of such complex
interpolation spaces and the last proves that [X, Y]y are actually interpolation spaces.

Theorem A.3.4. (Dual space) Let 0 € (0,1). IfY is dense in X and one of the two
spaces X or'Y is reflexive, then

(X, Y]y = [Y', Xli—0. (A.16)

This theorem is a consequence of the results in A.P. Calderén [12]. For the proof we
refer to [12].
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Theorem A.3.5. Let (X1,Y7),(X2,Ys) be complex interpolation couples. Assume that
T € L(X1,X2) N L(Y1,Y2), then the restriction of T)x, v, s in L([X1,Y1]e, [X2,Y2]s)
for every 6 € (0,1). Moreover,

170(

1T 211,100, 1%z v200) < TN 211, x2)) T 2pvs,v2)°-

For the proof and a complete analysis of these spaces we refer to [46].






Appendix B

Heat kernel estimates on
domains

In this section we collect some upper and lower estimates for the integral kernel of
the semigroup associated with the parabolic problem

Ow—Aw =0 in (0,00) x Q
w(0) = ug in (B.1)
(ADw,v) =0 in (0,00) x OS2

under the hypotheses summarized at the beginning of Chapter 5. Since we shall deal with
several semigroups, the exponential notation seems to us to be clearer, as it emphasizes
the relevant elliptic generator. In fact we consider

Ao =div(A-D), A =div(A-D)+B-D and A=div(A-D)+B-D+c

and the related semigroups e_tAU,e_tA, and e *A whose kernels pg,p’ and p are such
that, e.g.,

e—tAf(x)ZAp(t,x7y)f(y)dy

and the analogous expressions for e~ ™40 and e~*4" hold.

We first recall upper estimates directly for p, that are well-known. On the contrary, lower
estimates are known in the symmetric case, i.e., for pg. After observing that there is no
difficulty in passing from p’ to p, we shall deduce lower estimates for p’, deducing them
from those on pg via a perturbation argument. The proofs in Section B.2.2 are due to G.
Metafune, E.M. Ouhabaz and D. Pallara whom we thank for communicating the above
results and allowing us to reproduce them here.
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B.1 Gaussian upper bounds for heat kernels

We collect the known Gaussian upper bound results in the following statement and
we refer to [45, Theorem 5.7] for the proof.

Theorem B.1.1. (Kernel estimates)

Let Q be an open set of R™ uniformly regular of class C?. Let A, B be as in (2.3)—(2.7)
and let (T'(t))i>0 be the analytic semigroup generated by the realization of A in L'(Q)
with homogeneous boundary conditions Bu = 0; for the kernel p : (0,400) xQ2xQ — R of
the semigroup (T'(t))i>0 the following estimates hold: there exist b,c1 > 0, a real number
w such that for |al,|6] <2, z,y € Q and t >0

c1 _plz=vl®
76 t
ntlol+16]
t 2

|D;’D5p(t,x,y)| < et (B.2)
B.1.1 Some norm estimates

Immediate consequences of the Gaussian upper bound are the following L' — L? and
LP — L°° estimates.

Proposition B.1.2. Let p > 1 and let e ** be the semigroup generated by A. Then
there exist co,c3 > 0 such that

le™ Al ory < ot 2073 0 <t <1, (B.3)
and
le ™l zr ey S st % 0<t <1 (B.4)

PROOF. Let f € LY(Q); then, using (B.2) we get

lle=*A£1I7

Lr(Q) :L’[)p(t,x,y)f(y)dyfdx
< 1oy 1906, e o
2

_ _plz—yl
< cit np/2||f‘|1£1(m/e b=
Q

= Clltig(pil) ||f||€1(9)

dx

Thus

_ _n(1_1
e A fll ey < c2t™ 28| fll gy
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and (B.3) is proved. Similarly, let f € LP, and p’ = p/(p — 1), then again by (B.2)

e~ iy = sup] | 0.0.0070)
e

N

< Ifllze @ sup lp(t, 2, )l Lo (o)
zeQ

_ﬂp’ —bp,lxiy‘Q 1/pl
c1ll fll e () sup (t 2 e : dy)
TEQ Q

_n@'-1

=cst™ | fllor) = cst” % || fll o)

IN

B.2 Gaussian lower bounds

This section is devoted to obtain Gaussian lower bounds for p(t,z,y). Such lower
bounds in the symmetric case can be deduced from Gaussian upper bounds and Hélder
continuity of the kernel.

Remark B.2.1. One can easily observe that if some Gaussian lower bounds are esta-
blished for p’, the same hold for p, more precisely p(t,z,y) > e “'p/(t,z,y). Indeed,
since ¢ € L*>(Q), then there exists w > 0 such that —w < ¢(z) <w a.e. x € Q. Let f >0
in  and consider u and v solutions respectively of the problems

Opu = div(A - Du) 4+ B-Du in (0,400) x Q

u(0,x) = f(x) in (B.5)
(ADu,v) =0 in (0, 4+00) x 9.
and
Opv =div(A-Dv)+B-Dv+cv in (0,400) X §2
v(0,2) = f(x) in (B.6)
(ADv,v) =0 in (0, 4+00) x 9.

By the maximum principle we deduce that u > 0. We want to prove that v > e~ “tu,

—wt o/

hence p(t, z,y) > e “'p/(t,z,y) as announced. The problem satisfied by z = v — w, with
w = e~ “uy, is

Oz — Az = (c+w)w >0 in (0,+00) x

z2(0,2) =0 in Q (B.7)

(ADz,v) =0 in (0, +00) x Q.
Thus applying again the maximum principle we deduce z > 0, i.e.

wt

p(t,z,y) > p'(t,z,y)e”

As a consequence of Remark B.2.1 we can restrict the study to the operator A’ = A —¢
and our aim will be to deduce Gaussian lower bound for p’.
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B.2.1 The symmetric case

We first consider the symmetric case and show lower bounds for py (more details are
contained in [34]). Under our assumptions on the coefficients, po is Holder continuous,
that is

|p0(t,l’,y) _po(t7l‘/7y)‘ < ktin/27’y/2|x - '1:/|77 for all x71‘/7y € (B8)

for some v > 0 and k£ > 0 independent on y. Moreover it satisfies the Gaussian upper
bound in Theorem B.1.1 and the conservation property holds: / po(t,x,y)dy =1 for
Q

all t >0 and x € Q.
The first step shows that an on-diagonal lower bound can be deduced from a Gaussian
upper bound and the conservation property.

Proposition B.2.2. There exists a constant C > 0 such that for all t > 0 and a.e.
x €
polt,x,x) > Ct—™/? (B.9)

PRroOOF. Fix 6 > 0; we have

/ po(t,z,y)dy < Cltfn/2/ ezt ezt dy
NB(=ov) \B(z.5V%)

< ke_%‘SQ.

Now, for § large enough, ke=39° < %, thus a.e. z € Q

/ po(t,m,y)dy:1—/ pO(taxay)dy
QNB(z,6V/1) Q\B(z,5v%)

>

N |

It follows by the semigroup property and the symmetry of py that
polt..) = [ polt/2. . p0(t/2.0. ) dy
Q

- /Q po(t/2, 2, )P dy

>

/ po(t/2,2.) P dy
QNB(z,6v/1)

2
Exvalt)
> po(t/2,2,y)dy
IQﬁB(afﬁ\/f)I( QNB(2,6V) olt/ ) )

1
> - > /2
~ 4[B(z,6V1t)|
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for some positive constant C'. O

The following step consists in deducing an off-diagonal Gaussian lower bound from
the on-diagonal one, by exploiting the Holder continuity of pg.

Proposition B.2.3. There exist positive constants C' and 1 such that
polt,z,y) > Ct"/? (B.10)

for all z,y € Q and t > 0, sufficiently small such that |z — y| < nV/t.

PROOF. Since by (B.8)
[po(t, z,y) = polt, ' y)| < kt™% 3|z —a'|

for all z,2’,y € Q we have
po(t,z,y) > po(t,y,y) — kt /277w —y|?

Thus, using estimate (B.9),

> -n/2 _ 1.3—n/2 |1’ - y| v
pO(tyxay) = Ct kt ( \/1? )

_ ot — (Iw\;iyl)v)

> thn/2

for |z — y| < 3/, which shows (B.10). O
Let us now extend the previous estimate to arbitrary z,y in .

Theorem B.2.4. Let py(t, z,y) be the heat kernel of Ag. There exist constants ¢, Cy > 0
such that

Jz—y|?
t

po(t,z,y) > Cot~"/2e™c0 (B.11)

forall x,y € Q and t > 0.

Proor. Let z,y € Q. Fix N € N and consider a finite sequence of points x;,
0 <4< N in Qsuch that zg = z, x =y, [z;, xi41] C Q and |z; — zi41] < K% =:r
foralli =0,...,N — 1. Then by the semigroup property and the positivity of py (¢, z,y),
we have

t t t
pO(tax»y):‘/Q'-'APO(N,xvzl)pO(NazlaZQ)-'-pO(N»ZNflay)dzl'-'dZNfl

t t t
Z/ / Po(+> %, 21)po(=z5 21, 22) - - Po( =5, 2N—1,Y) d21 .. . dzN 1
B(zy1,r)NQY JB N N N

(xN—1,7)NQ

Let us observe that if z; € B(x;,r) and z;41 € B(zi+1,r) (where we have set zp = x and
2ZN =v), then it holds that

|ZZ‘72’¢+1|S|IIZ’¢*IE¢+1‘+2T’S(K+2)T‘ ZZO,,Nfl
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If (K +2)|z —y| < nvt (n as in Proposition B.2.3) then |z — y| < nv/t. In this case
(B.11) follows from (B.9) and Proposition B.2.3.
If (K +2)|z — y| > nV/t, we choose N > 2 to be the smallest integer such that

|z -yl
K +2)—— <nvt.
( ) v ="
this yields that |z; — z;11] < (K + 2)% < mny/% for i =0,...,N —1. Then using
Proposition B.2.3 in the above integrals we get

t t
po(t,x,wz/ / Pol:21) - Polaes 21, 9) den - e
B(z1,m)NQ B(zxy_1,7)NQ

N[fE\-EY
N B(z1,r)NQ B(zn_1,m)NQ

e () ()] ke (1) wa

where we have used the regularity of € in order to say that there exists a constant

k(n,§) > 0 such that for all z € Q, |QNB(z,7)| > k(n,Q)|B(z,r)|. Finally, by definition
2

of N, we have N — 1 < KW@, thus from (B.12)

lz—y|?
t

po(t, z,y) > Cot /20 .

This concludes the proof. O

B.2.2 The non-symmetric case

Notice that in the proof of Proposition B.2.3 symmetry has not been used. Therefore
if p/(t,-,y) is Holder continuous and p/(t,z,2) > ct~"/?, using an argument similar to
Proposition B.2.3 and Theorem B.2.4, we get Gaussian lower bound for p/'(t, z,y), too.
Moreover Theorem B.2.4 holds also without assumptions of symmetry and Holder con-
tinuity. Its proof uses only estimate (B.10).

Let us show that the L' — L° norm of the difference e tA —e 40 ig relatively small.
Now, we prove a result which allows us to conclude without assuming Holder continuity
for p'.

Proposition B.2.5. There exists C' > 0 such that

™A — et o1 poey < CEEFE (B.13)

PRrROOF. The integral representation of the solution gives that

¢
e tA et Ao = / e~ (=904 B pe=sAogs
0

t/2 , t ,
= / e~ t=9A' B . De=sAo s +/ e~ t=9)A' B De=sAo s
0 t/2
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Now, by using (B.3), (B.4), the fact that De=*4 ¢ L(LP) for 1 < p < 2 and that
[De= 240 £ 10y < cas™ /2, we get for p > 1 (close to 1) the following estimate

t/2 /
H/ e‘(t—S)A B- De—sAOfdsH
’ Lo (9)
t/2 ,
1B [ 1 e D S Sl
t/2 i 1
< CHf||L1(Q)/ (t — 5)"V2Ps~ 125309 gg
0
t/2 o
<CEM e [ 5T D ds
0

= Ct 543 fllp1(o (B.14)

where C' = C(c2, ¢3, ¢4, || Bl|so). Moreover from (B.2) we have that |[De™ 24| z(z4 ooy <

_1 .
c5s” 27 4. Thus, using an exponent g close to co we get

t
H / e (=4 B De=s o f
t/2 L>=(Q)

t
< |IBllooll fll 1 (0) //2||D€"‘A0 l2(ra,zoylle™ 22| (1, payds
t

t
S CHf”Ll(Q)/ 8—1/28—n/2 ds

t/2
<O EE| e (B.15)
where C' = C(ca, ¢s5, || Bl|oo ). Summing up (B.14) and (B.15) we get the claim. O

As an immediate consequence we deduce a Gaussian lower bound for p(¢, z, y).
Theorem B.2.6. Let p/(t,z,y) be the fundamental solution of 9y — A’. Then there exist
positive constants Cy,cy such that

o —y|?

Pt a,y) > Cit e

for all z,y € Q and t > 0, sufficiently small.

PROOF. Since
le~tA — e tA0|| 11 pee < Ct 3 T2 (B.16)

by the Dunford-Pettis theorem (see [7] for a proof) we have
2+

sup ‘p/<t7 xz, y) - p0<t7 z, y)' S Ct™ =2
z,yeN

SIS

whence, for |z — y| < 7/t (1 as in Proposition B.2.3) we get
p/(t7 z, y) Z pO(t, Z, y) — Ct7L2L+%
>Ct™2(1 -1
>Ct 3
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for ¢ < §p independent of x,y. Thus Proposition B.2.3 is true also for p'(¢,z,y) and
proceeding as before we deduce (B.11) also for p'(¢, z,y). O

From Remark B.2.1 we finally deduce the following.

Corollary B.2.7. Let p(t,x,y) be the heat kernel of 0y — A. Then there exist constants
c1,C1 > 0 such that

Jz—y|?

p(t,x,y) > Crt "/ 2eme 7 e (B.17)

for allxz,y € Q and t > 0 small.



List of symbols

Number sets and vector spaces
N7 Z7 Q7 R7 C

R’ﬂ

Sn—l

R

CTL
aNb,aVb
|al

Re A, Im A

#E

Topological and metric space notation
E

OF

E'C

set of natural, integer, rational, real and
complex numbers

set of all real n-tuples

unit sphere of R™

R" N {x, > 0}

set of all complex n-tuples
minimum and maximum of a and b
the length of the multi-index « i.e.
o] = a1+ -+ ay

real and imaginary part of A € C
the cardinality of the set E

topological closure of E

topological boundary of F

the complementary set of £ in a domain
Qorin R™

E C F,E compact

open ball with center x and radius r
B(0,r)NRY

set of bounded and linear operators
from X to Y

L(X,X)

dual space of the Banach space X
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Matriz and linear algebra
I

detB

e

TrB

1B

[1Bll1,00
[Bl2,00
()yorz-y

Function spaces: let f: X —Y
fLE or fig
supp f

XE
Ut

C(X,Y)
c(Q)
Ce(Q)
Co(2)
UCy(£2)

Cy (@)

c(Q)
che(Q)

S(R")

[U]Ca(n)

[~ [l (@)

||U||ckva(9)

(LP(), |- lze (o))
(WHhP), | - lwewo)
Wil ()

Wy ()

w=mp(Q)

BV (Q)

the identity matrix

the determinant of the matrix B

i-th vector of the canonical basis of R™
the trace of the matrix B

the Euclidean norm of the matrix B, i.e.
(0= 032

(X het [Drbis[?)/2

(ZZj,h,k:l |thbij|2)l/2

the Euclidean inner product between the
vectors z,y € R"

restriction of f to E C X

closure of {z € X : f(z) # 0}

characteristic function of the set £

partial derivative with respect to t

partial derivative with respect to x;

D;D;

space gradient of a real-valued function u
Hessian matrix of a real-valued function u
Tr(D?u)

space of continuous functions from X into Y
space of continuous functions valued in R or C
functions in C'(2) with compact support in 2
closure in the sup norm of C.(2)

space of the uniformly continuous and bounded
functions on 2

space of k-times differentiable functions with D™ f

for |m| < k bounded and continuous
up to the boundary

space of a-Holder continuous functions, a € (0,1)
space of f € C¥(Q) with D™ f € C*(Q) for
|m| < k and « € (0,1)

Schwartz space of rapidly decreasing functions

[u(z)—u(y)|

the seminorm sup, ,cq EEE

sup norm
o<k 1Dul| Lo () + [DFu]ceq)

usual Lesbegue space

usual Sobolev space

space of functions belonging to W*P (')
for every ' CcC Q

closure of C2°(€2) in W*P((Q)

dual space of Wgn’p/(ﬂ) with % + i =1
functions with bounded variation in (2



B(X)
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linear operator

formal adjoint operator of A
realization of A in a Banach space X
the domain of A

resolvent set of the linear operator A
spectrum of the linear operator A
identity operator

the operator AB — BA defined in
D(AB)N D(BA)

o- algebra of Borel subsets of a topological
space X

the R™-valued finite Radon measures on X
the space of positive finite measures on X
Lebesgue measure in R™

Lebesgue measure of B(0,1) in R™
k-dimensional Hausdorff measure

the Lebesgue measure of the set E

total variation of the measure p

restriction of the measure p to the set E
distributional derivative of u

perimeter of F in )

perimeter of E in R™

generalized inner normal to £

set of points of density t of F

reduced and essential boundary of E
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