1. Intreoduction.-

It is not always easy to solve the problem of approximating a
function  y(x) of which a discrete set of approximate values is
known if the degree of reliability with which they are known is

uncertain,

In particular it is often impbssib]e to apply its result to numerical
derivation. It is moreover particularly inefficient to determine
an approximation of a function by an exact fitting of the avaiiable
data when the function y(x) one wishes to approximate is known at

many points of the interval.

It is then clearly preferable to consider the majority of the given
values rather than to choose an arbitrary set, composed of the smallest

number of discrete values necessary to determine a set of conditions.

In this note we present a method of computation that improves the
precision of the data y. which approximate a differentiable function

;
at same points Xi’ {i = 0,1,...n) and which computes the values taken
at the points X (i = 0,1,...,n) by the derivative y'(x).

The method we propose uses both the quadrature formulas that connect
the values of the derivative of a function to the values of the function

itself and Cook's method [1].

The present method has been developped in order to determine the

energy Tevel of a trapping centre in a semiconductor by studyving the

trapped charge.

[t has been tested on some analytical functions, tabulated at points

that differed from the true values by less than 1%.



2. Theory of the method of numerical derivation.

Let the values taken by the differentiable function y = y(x) be

assigned in correspondence of the values X aXyseesX, of x, where

+ Yy S
X, = ih {i =0,1,...,n), h € R . (2.1

In the following we shall denote, for each i, by Ys and 8Y s
respectively the given numerical values and the deviation of every given

Y. from the corresponding theoretical value y(x.).

We shall denote by
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the {n+l)-dimensional column vector and by E the identity matrix

of order n+l.

Let A be an invertible linear operator such that

A'.' = Y . Chld

in the sequel we shall assume, for short, A to be an invertible

matrix of order n+l.

it is our aim to give a numerical evaluation of vector o, or of tne



values that the derivative y' = y'(x) takes at the points (2.1) with

the highest possible precision.

It follows from (2.2) and from the relation YT = YS + AY that
Ao = Y + af (2.3
or
- - {7.4
o= ATy + AT ay o
S
Even though AY «can be regarded as negligible with respect to YS
and therefore a relationship of the type
Ao ~ Y (2.5)

may be thought to hold, AﬁlaY is in general not negligible with respect

1

to A Yos the solution A-lYS is thus not "acceptable”.

We denote by W the diagonal matrix (E-AY)-] and by | - . the

) ) n+]
euclidean norm in R .

We shall say that

Q

= (y',y! ')T is an "acceptabie"” soluti
g = Ygo¥qpseonyy p e" solution

of the problem if

Lo TH(Yg - o) 18 Y. (2:5)
In order to obtain, among all the possible solutions o that satisfy

(2.6), the one that offers the " best possible solution", we define

a structure function S{o), which is, to a certain extent, arbitrary,and

we require that the solution vector o be such as to minimize the

function S(o) and satisfy (2.6). Using the method of Lagrange's

multipliers one obtains the equation



[

2+ 485 = 0 (2.7)

Y

We shall denote by S the matrix (which we shall call, for short,
smoothing matrix, such that
8S = Soéo

and by A the transposed matrix A. One obtains
; S I T
Sx< = |{2A We(Ao - YS); 8o

and hence

T .
Sx° + usS = [2AWX(As - Y¢) +uSc ¢S,

In order for (2.7) to be verified it is necessary and sufficient that

T o=
Ac - YS + X (A We) ] So = 0
then
o= [A+ A AW TsTo (2.«
The solution O¢ that we are looking for is then obtained as a

solution of the system (2.8), {(which is a system of n+l equations in the

n+2 unknown yé,yi,,..,yﬁ,h) if one chooses A in such a way that

ve  2on+l.

The matrix A we have considered is the matrix of order n+]
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2y(x,)
where Y = hy'(xo) if y(xo) -y (xo) # 0. If, on the contrary,
y(xo)-y'(xo) = 0 one considers the matrix of order n obtained from

\

A by deleting the first row and the first column (provided y(x1).y‘(x1)#0,
The structure functions considered by us are

1

" 2
n-1 5
2plo) = TR gy = & Ty )
351
The corresponding smoothing matrices we obtained by considering oy
S, ‘
and v ; they are respectively
1 ‘,-' A\
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S] = 2 Tt
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1 -4 6 -4 10 }
52 A
C v, 0 ] -4 6 -4 ]
) 0 0 1T -4 5 -2



After determining o = (yé,yi,...,yé) by the method outlined
above we can determine with a higher precision the numerical values
v, setting 0

€« n
oF T e QLY i=0,T,...,n
i T2 0 457 ’ *
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. Numerical results

We have tested the method for the evaluation of the derivatives

yi (i =1,40) of some analytical functions y(x) at the points

Xs = ih (1 = 1,40) for nh = 0,05 starting from a set of approximate

values y_.i as reported in table I,II,III.

The values yf obtained by the present method are clearly better

i

than the given v% S.

-

The method has been used in order to determine the maximum value of
the moduius of the derivative of a function measured experimentally. In
every case, we have adopted the smoothing matrix 52.

Figure 1 shows the experimental values Yis i = 1,25 the accumulated
charge in terms of the energy of the quasi Fermi level in a semiconducting
crystal in space-charge conditions due to trapping levels, the function
(solide line) and the modulus of the derivative (dashed line), calculated

by the present method.

The maximum value of the modulus of the derivative y' 1is connected

to the energy position of the trapping level that governs the phenomenon.

The result we obtain agrees with that determined by other methods, 2 .



TABLE 1

A= 2.107 y(x) = lel xz = 38,5%
*

* y(x) Y5 Y v o) Y
0.05 0.000041 0.000041 0.000041 0.002500 0.002475
0.25 0.005208 0.005156 0.005209 0.062500 0.061252
0.45 (0.030375 0.030071 0.030370 0.202500 0.201944
.65 0.091541 G.090626 0.091522 0.422500 0.422007
0.85 0.204708 0.202661 0.204682 0.722500 0.722012
1.05 0.385875 0.382016 0.385747 1.102500 1.100949
1.25 0.651041 0.644531 0.65064/ 1.562500 1.561237
1.45 1.016208 1.006046 1.016215 2.102500 2.107910
1.65 1.497375 1.482401 1.499130 2.722500 2.731212
1.85 2.110541 2.089436 2.111794 3.422500 3.399466

(a) We have reported in each table only a few results as the space would be insufficient to report all of them.
fable I reports for the function y(x) = x3/3 the values of the abscissae X5 of the theoretical ordinates
y(xj), of the experimental ordinates Yio that differ from the true value by less than 1%, those calculated by
the present method y:, the theoretical values of the derivative y'(xi) and the values of the derivative y%
obtained by the present method. The value of the Lagrange multiplier and the relative value of }? are also

vepor ted



TABLE I1

y = 10° y(x) = e =x~1 = 39,42

X y(x ) y; y: y' (x.) Y.
0.05 0.001271 0.001258 0.001259 0.051271 0.050820
0.25 (0.034025 0.033685 0.034045 (0, 284025 0.28195
0.45 0.118312 0.117129 0.118290 G.5683172 0.567674
0.65 0.265540 0.262885 0.265488 0.915540 0.914879
0.85 0.489646 0.484750 0.489543 1.339646 1.338830
L.O5 0,807651 0.799574 0.807525 1.857651 1.857131
1.25 1.240342 1.227939 1.240083 2.490342 2.487356
1.45 1.813114 1.794983 1.812066 3.263114 3.258322
1.65 2.556979 2.531410 2.556752 4.,206979 4.221641
1.85 3.509819 1.474721 3.513975 5.359819 5.373412

fable II reports the analogous results for the function y(x) = e*-x-1. For the meaning of

symbols see table II.



A =4 .}t}7
X, y(xi)
0.05 0.001249
0.25 0.031087
0.45 0.,09955?2
0.65 0.7203916
0.85 0.340016
1.05 0.502428
1.25 0.684677
1.45 0.879497
1.65 1.079120
1.85 1.275590

Table III reports the analogous

symbols see table I.
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TABLE 111

y(x)=l-cos(x)

001237

.030776

098557

201877
336616

497404

.677830
.870702
.068329
.262834

results for the function

0]

0

0.

)r

L0011 241
.031078

L0995373

203869

. 339946
.H02448
6847131
.878949
077571

L275774

vi(x,)
1

0.049979
0.2474073
0.434965

0.605186

c

.751280
0.867423
0.948984
0.992712
0.996865
.961275

o

40

0.049642
0. 247244
0.435012
0.605094
0.751536
0.868300
0.948271
0.987785
0.994580
0.986571

y(x) = 1-cos(x). For the meaning of
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Figure caption

The figure 1 reports the experimental values (dots), measured with an
error estimated about 5%, of the accumulated charge versus the quasi
Fermi level. In the same figure we show also the values of the function
o(E) calculated by the present method (solid line) and those of the
modulus of the derivative (dashed 1ine) for A= 4.1018 to which there
corresponds the value x2 = 24,39, to be compared with the number of

experimental points N = 25.
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