- 2) The graphs $G = \{u, v, w\}$ with the edges $u \rightarrow v$, $u \rightarrow w$, $v \rightarrow w$ and $G' = \{q, r, s, t\}$ with edges $q \rightarrow r$, $q \rightarrow s$, $q \rightarrow t$, $r \rightarrow s$, $r \rightarrow t$, $s \rightarrow t$ are examples of almost complete graphs. Moreover, the sets $\{u, v, w\}$, $\{q, r, s, t\}$ are examples of totally headed (i.e. totally tailed) subsets. Their compatible orders are, respectively, u < v < w, q < r < s < t.
- 3) In the graphs $G = \{f,g,h\}$ with the edges $f \to g$, $g \to h$, $h \to f$ and $G' = \{\ell,m,n,p\}$ with the edges $\ell \to m$, $\ell \to n$, $m \to n$, $m \to p$, $n \to \ell$, $n \to p$, $p \to \ell$, $p \to m$ the sets $\{f,g,h\}$ and $\{\ell,m,n,p\}$ are examples of non-headed minimal (i.e. non-tailed minimal) subsets.

2) Singularities of a regular function.

PROPOSITION 7. - Let S be a topological space, G a finite directed graph, $f: S \to G$ an o-regular function from S to G and $X = \{v_1, v_2, \dots, v_n\}$ a non-headed subset of G $(n \ge 2)$. Then it holds:

$$V_1^f \cap V_2^f \cap \dots \cap V_n^f = \phi;$$

$$v_1^f \cap v_2^f \cap \dots \cap v_n^f = \phi$$

$$\sqrt{f} \cap \dots \cap \sqrt{f} \cap \sqrt{f} = \phi$$

Proof. - Since X is a non-headed subset, there is no vertex v_{i} , which is a predecessor of all the other n-1 vertices. Then, for every $i=1,\ldots,n$ let w_{i} be a vertex such that $v_{i} \neq w_{i}$. From o-regularity of i it is $v_{i} \cap \overline{w_{i}} = \phi$. Since w_{i} is one of the vertices $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}$, it follows $v_{1}^{\delta} \cap \ldots \cap v_{i-1}^{\delta} \cap v_{i+1}^{\delta} \cap v_{i}^{\delta} \cap v_{i+1}^{\delta} \cap \ldots \cap v_{n}^{\delta} = \phi$.

DEFINITION 5. - Let S be a topological space, G a finite directed

graph, $f: S \to G$ an o-regular (resp. o*-regular) function from S to G and $X = \{v_1, v_2, \ldots, v_n\}$ a n-tuple of vertices of G with $n \ge 2$. Then X is called a singularity of f or a singular set of f if:

i) X is non-headed (resp. non-tailed);

$$(i)$$
 $v_1^f \cap v_2^f \cap \dots \cap v_n^f \neq \emptyset$.

Moreover, X is called a proper singularity of f if i) is replaced by:
i') X is non-headed minimal (i.e. non-tailed minimal).

Finally, the closed set $\overline{v_1^f} \cap \overline{v_2^f} \cap \dots \cap \overline{v_n^f}$ is called the support of the singularity.

PROPOSITION 8. - If $X = \{v_1, v_2, \dots, v_n\}$ is a singularity of $\frac{f}{\sqrt{f}}$, then $\frac{X}{\sqrt{f}}$ has an empty intersection with the image of its support, i.e. $f(V_1^f) \dots \cap V_n^f) \cap X = \frac{f(V_1^f) \dots \cap V_n^f}{f(V_1^f)} \dots \cap V_n^f}$

Proof. - It follows from Proposition 7.

REMARK. - Since every non-headed (non-tailed) subset of G includes a non-headed minimal (non-tailed minimal) subset of G, every singularity includes a proper singularity, Hence, every singular couple is a proper singularity.

DEFINITION 6. - Let S be a topological space, G a finite directed graph and $f: S \to G$ an o-regular (resp. o*-regular) function from S to G. The function f is called completely o-regular (resp. completely o*-regular) or simply c.o-regular (resp. c.o*-regular), if there are no singularities of f. We note that Definitions 5,6 can be extended to undirected graphs. Then it follows:

PROPOSITION 9. - Let S be a topological space and G a finite undirected graph. Then a strongly regular function (see [5], Definition 3) f: S \rightarrow G from S to G is also c.regular.

Proof. - By definition of strongly regular function there is no singular couple of vertices. Resides, by Proposition 6, there does not exist any non-headed minimal n-tuple with n > 2, then there are no proper singularities of 6. Hence, by Remark to Proposition 8, 6 is c. regular.

DEFINITION 7. - Let S be a topological space, S' a subspace of S, G a finite directed graph, G' a subgraph of G and $f: S,S' \to G,G'$ a function from the pair S,S' to the pair G,G'. The function f is called completely o-regular (resp. completely o*-regular) or simply c.o-regular (resp. c.o*-regular), if both $f: S \to G$ and its restriction $f': S' \to G'$ are c.o-regular (resp. c.o*-regular).

REMARK. - If S'' is a subspace of S', G'' a subgraph of G including G', $f:S,S'\to G,G'$ a c.o-regular (resp. c.o*-regular) function, then also the functions $f:S,S''\to G,G'$, $f:S,S'\to G,G''$ and $f:S,S''\to G,G''$ are c.o-regular (resp. c.o*-regular).

PROPOSITION 10. - Every strongly regular function from a pair of topological spaces S,S' to a pair of finite undirected graphs G,G' is also c.regular.

3) The first normalization theorem.

PROPOSITION 11. - Let S be a normal topological space, G a finite directed graph, $f: S \to G$ an o-regular function from S to G and $X=\{v_1,\ldots,v_n\}$ a singularity of f. Then there exists an o-regular function g from S to G, which is o-homotopic to f and such that: