POINCARE RECURRENCE THEOREM FOR FINITELY ADDITIVE MEASURES E. BARONE , K.P.S. BHASKARA RAO⁽¹⁾

SUMMARY. - In this paper we study the validity of Poincaré recurrence theorem for finitely additive measures.

§ 1.- DEFINITIONS AND PROBLEM

Let X be an arbitrary non empty point set, and T : $X \rightarrow X$ a trasformation on X. If (X,Q,μ) is a charge space, i.e., Q is a field of subsets of X and μ is a nonnegative charge (usually called finitely additive measure) the transformation T is called a measurable transformation if

(1.1)
$$\forall A \in Q : T^{-1}(A) \in Q$$

A measurable trasformation T is said to be measure preserving if

(1.2)
$$\forall A \in (A : \mu(T^{-1}(A) = \mu(A)).$$

If T is a measure preserving transformation and $E \in \mathcal{A}$ then a point x e E is called recurrent if

$$\exists n \in \mathbb{N}^{\binom{2}{}}$$
 such that $T^n x \in E$

and x is called strongly recurrent if

Tⁿ x є E for infinitely many values of n.

(1) Work supported by CNR during a visit by the second Author to the University of Lecce.

(2) N is the set $\{1,2,3,\ldots\}$ of positive integers, $\mathbb{N}_{\circ} = \{0,1,2,\ldots\}$ and $\mathbf{Z}' = \{\ldots -2, -1, 0, 1, 2, \ldots\}$