(2.5) Theorem

Let M be a smooth compact orientable manifold of dimension even n and suppose that it has a distribution of oriented q-planes with q odd $(1 \leq a<n)$. Then the Euler-Poincare characteristic of M is null.
3. Proof of theorems A and B.
(3.1) To every distribution there corresponds a smooth subbundle E_{i} of the tangent bundle with the fibre of dimension n_{i}. Denote the quotient bundle by $Q_{i}=T M / E_{i}$. From the Whitney duality formula $p(T M)=p\left(Q_{i}\right) p\left(E_{i}\right)$ it follows that

$$
\begin{equation*}
P_{r}(T M)=P_{r}\left(Q_{i}\right)+P_{r-1}\left(Q_{i}\right) P_{1}\left(E_{i}\right)+\ldots+p_{1}\left(Q_{i}\right) P_{r-1}\left(E_{i}\right)+P_{r}\left(E_{i}\right) \tag{3.2}
\end{equation*}
$$

where the product between classes is the "cup product" in the ring $H^{*}(M ; \mathbb{R})$. If $2 r>n_{i}$, then $r>n_{i} / 2$ and hence $P_{r}\left(E_{i}\right)=0$. If moreover

$$
\begin{equation*}
P_{h}\left(Q_{i}\right) P_{s}\left(E_{i}\right)=0 \quad \forall h, s \geq 1, h+s=r \tag{3.3}
\end{equation*}
$$

then

$$
P_{r}(T M)=P_{r}\left(Q_{i}\right) \quad 2 r>n_{i}
$$

Notice that, since the Pontrjagin ring may have divisors of zero, condition (3.3) does not imply that either $P_{h}\left(Q_{i}\right)=0$ or $p_{s}\left(E_{i}\right)=0$. On account of our assumptions, from theorem (1.1) one can conclude that

$$
P_{r}\left(0_{i}\right)=0 \quad 2 r>\max \left(n_{1}, \ldots, n_{k}\right)
$$

This proves theorem A.
(3.4) It is well known that if $E_{i} \subset T M$ is isomorphic to an integrable
subbundle, then by Bott's theorem

$$
P_{r}\left(Q_{i}\right)=0 \quad r>2 q_{i}
$$

where $q_{i}=n-n_{i}$. Hence in the assumptions of theorem A, if $m=\max \left(n_{1}, \ldots, n_{k}\right)<4 q_{i}$, then one has for the integers h for which $m<b<4 q_{i}$

$$
P_{r}\left(Q_{i}\right)=0 \quad 2 r>h
$$

whithout assuming that Q_{j} be integrable. This is meaningful if $k>2$.
(3.5) Conversely let us assume Q_{i} to be integrable. Then, under our assumptions, one has at the same time

$$
P_{r}(T M)=0 \quad P_{r}\left(Q_{i}\right)=0 \quad 2 r>\max \left(m, 4 q_{i}\right)
$$

hence an account of (3.2)

$$
P_{h}\left(Q_{i}\right) P_{s}\left(E_{i}\right)=0 \quad \forall h, s \geq 1, h+s=r .
$$

This ends the proof of theorem B.

Remark

The results of theorem (2.1) hold in the more general situation of an almost multifoliated riemannian structures on a manifold, i.e.

$$
T M=E_{1}+\ldots+E_{k}
$$

where E_{i} are not necessarely complementary. Infact by increasing the number of distributions, with a suitable choice of the metric ([7]) it is possible go back to the previous situation.

