TM and if M is compact and orientable; the Gauss-Bonnet theorem says that

$$
\int_{M} f^{*}{ }_{\Omega}^{(n)}=x(M)
$$

where $\quad x(M)$ is the Euler-Poincaré characteristic of M and $f: M \rightarrow \tilde{G}_{n}(M)$ is an orientation of $M, \tilde{G}_{n}(M)$ being the Grassmann bundle of the oriented n-planes tangent to M.

2. A vanishing theorem

We can now prove the following theorem ([3])
(2.1). Theorem

Let M be a riemannian smooth orientable manifold of dimension n which admits k complementary (smooth) distributions of oriented n_{i}-planes $(i=1, \ldots, k)$. Then the real Pontrjagin classes $P_{r}(M)$ are null for $2 r>\max \left(n_{1}, \ldots, n_{k}\right.$

Proof.

Let ${ }^{\sim} \mathrm{E}$ be the principal fibre bundle of the orthonormal frames (associated to the tangent). Its structural group is $G=S O(n)$ (the rotation group). We recall that the Lie algebra $\tilde{\mathscr{F}}$ of $S O(n)$ can be identified with space of the skew-symmetric matrices of order n.

Let us consider the subbundle E of \tilde{E} formed of the frames "adapted" to the distributions, viz. the orthogonal frames $\left\{e_{i}\right\}(i=1, \ldots, n)$ so that the vectors

$$
\left\{e_{\alpha_{j}}\right\} \quad \alpha_{j}=n_{1}+\ldots+n_{j-1}+1, \ldots, n_{1}+\ldots+n_{j} \quad\left(n_{0}=0\right)
$$

form a basis for T^{j}. The bundle E can be regarded as having structural group

$$
G=S O\left(n_{1}\right) \times S O\left(n_{2}\right) \times \ldots \times S O\left(n_{k}\right) .
$$

A connection ω on E is represented by a l-form which takes values in the Lie algebra $C \mathcal{C}$ of G, where \mathscr{F} is the direct product of the Lie alge bras of $S O\left(n_{r}\right)$. Hence one obtains

$$
\omega_{i j}=0 \quad \omega_{i j}+\omega_{j i}=0 \quad i, j=1, \ldots, n
$$

$\omega_{\alpha_{i} \beta_{j}}=0 \quad i \neq j \quad i, j=1, \ldots, k ; \alpha_{i}, \beta_{j}=n_{1}+\ldots n_{j-1}+1, \ldots, n_{1}+\ldots+n_{j}$
Analogous relations hold for the components of the curvature form Ω. Therefore, if $2 r>\max \left(n_{1}, \ldots, n_{k}\right)$, then each term in (1.2) will have a factor $\Omega_{\alpha_{i} \beta}$ with $i \neq j$; the assertion $P_{r}(T M)=P_{r}(M)=0$ then follows from (1.1).

Remarks

(2.2) If $k=n$ and therefore $n_{i}=1 \forall i$ (i.e. the manifold is parallelizable) then $P_{r}(M)=0 \quad \forall r$. It follows that the adapted connection vanishes. The manifold is then flat.
(2.3) For $k=2$ (and obviously for $k=1$) the theorem is not meaningful. As for $n_{1}+n_{2}=n, \max \left(n_{1}, n_{2}\right) \geq[n / 2]$ and consequently $P_{r}(M)=0$ $\forall 2 r>\max \left(n_{1}, n_{2}\right)$.
(2.4) It is worth noticing that the existence of a distribution of
 analogous to the one followed above, using the Gauss curvature form, yields the following
(2.5) Theorem

Let M be a smooth compact orientable manifold of dimension even n and suppose that it has a distribution of oriented q-planes with q odd $(1 \leq a<n)$. Then the Euler-Poincare characteristic of M is null.
3. Proof of theorems A and B.
(3.1) To every distribution there corresponds a smooth subbundle E_{i} of the tangent bundle with the fibre of dimension n_{i}. Denote the quotient bundle by $Q_{i}=T M / E_{i}$. From the Whitney duality formula $p(T M)=p\left(Q_{i}\right) p\left(E_{i}\right)$ it follows that

$$
\begin{equation*}
P_{r}(T M)=P_{r}\left(Q_{i}\right)+P_{r-1}\left(Q_{i}\right) P_{1}\left(E_{i}\right)+\ldots+p_{1}\left(Q_{i}\right) P_{r-1}\left(E_{i}\right)+P_{r}\left(E_{i}\right) \tag{3.2}
\end{equation*}
$$

where the product between classes is the "cup product" in the ring $H^{*}(M ; \mathbb{R})$. If $2 r>n_{i}$, then $r>n_{i} / 2$ and hence $P_{r}\left(E_{i}\right)=0$. If moreover

$$
\begin{equation*}
P_{h}\left(Q_{i}\right) P_{s}\left(E_{i}\right)=0 \quad \forall h, s \geq 1, h+s=r \tag{3.3}
\end{equation*}
$$

then

$$
P_{r}(T M)=P_{r}\left(Q_{i}\right) \quad 2 r>n_{i}
$$

Notice that, since the Pontrjagin ring may have divisors of zero, condition (3.3) does not imply that either $P_{h}\left(Q_{i}\right)=0$ or $p_{s}\left(E_{i}\right)=0$. On account of our assumptions, from theorem (1.1) one can conclude that

$$
P_{r}\left(0_{i}\right)=0 \quad 2 r>\max \left(n_{1}, \ldots, n_{k}\right)
$$

This proves theorem A.
(3.4) It is well known that if $E_{i} \subset T M$ is isomorphic to an integrable

