one has

$$P_r(Q_i) = 0$$
 $2r > max(n_1, ..., n_k).$

Using Bott's "Vanishing Theorem" one can, in a certain sense invert the preceding result obtaining

THEOREM B

Let M be a riemannian smooth orientable manifold of dimension n. Furthermore let M have k complementary distributions $E_i \subset TM$ and let the bundle $Q_i = TM/E_i$ have fibre of dimension q_i with

$$q_i = n - n_i$$
 and $n_1 + \dots + n_k = n$.

If Q_i is integrable, then for $2r > \max(n_1, \dots, n_k, 4q_i)$

$$P_h(Q_i)p_s(E_i) = 0$$
 $\forall h, s \ge 1$ and $h + s = r$

holds.

In order to give a self-contained presentation we recall the necessary preliminaries.

1. Preliminaries

Let M be a smooth (paracompact) manifold and let E be a vector \mathbb{R}^{q} -bundle on M. As is well known, the total (real) Pontrjagin class p(E) of E is defined by

$$p(E) = 1+p_1(E)+...+p_1(E) = \left[\det \left(I - \frac{1}{2\pi} \Omega\right)\right]$$

 $\left[\frac{q}{2}\right]$

where Ω is the curvature of an arbitrary connection on E and $p_r(E) \in H^{4r}(M;\mathbb{R})$

where $H^*(M; \mathbb{R})$ is the de Rham cohomology ring of M. $P_r(E)$ is called the <u>r-the Pontrjagin class of E.</u> Clearly $P_r(E) = 0$ for 4r > n if $n = \dim M$. Moreover if E is an orien ted bundle of even dimension q, then the class $p_{q/2}(E)$, which is locally represented by the closed form $(2\pi)^{-q}$ det Ω , equals the square of the Euler class; this latter is strictly connected with the Euler-Poincaré cha racteristic of the manifold under consideration, if E = TM.

If E is the tangent bundle TM, then the classes are also called Pontrjagin class of M and are often denoted by $P_r(M)$.

Let Ω is the curvature form of a connection on the principal fibre bundle of orthonormal frames, then the explicit expression of Pontrjagin

classes is give by (1)

(1.1)
$$P_{r}(TM) = \begin{bmatrix} \frac{[(2r)!]^{2}}{(2^{r} r!)^{2}(2\pi)^{2r}} & \Sigma \Theta_{i_{1}\cdots i_{2r}}^{(2r)} & \Theta_{i_{1}\cdots i_{2r}}^{(2r)} \\ (2^{r} r!)^{2}(2\pi)^{2r} & (1)^{i_{1}\cdots i_{2r}} & 1 \cdots i_{2r}^{2r} \end{bmatrix}$$

where

(1.2)
$$\Theta_{i_{1}\cdots i_{s}}^{(s)} = \frac{1}{s!} \sum_{\substack{s \mid \\ (i) \\ s}} \delta(i_{1}, \dots, i_{s}; j_{1}, \dots, j_{s}) \Omega_{j_{1}j_{2}} \wedge \dots \wedge \Omega_{j_{s-1}j_{s}} j_{s-1} j_{s}$$

s is an even integer and $\delta(i_1, \dots, i_s; j_1, \dots, j_s)$ is the generalysed Kronecker symbol.

(1.3)
$$\Omega^{(n)} = \left[2^{n} \pi^{n/2} \left(\frac{n}{2}\right)!\right]^{-1} \Sigma \varepsilon_{i_{1} \cdots i_{n} i_{1} i_{2}} \cdots \Lambda^{\Omega}_{i_{n} i_{n} i$$

called Gauss curvature form of M, is a representative of the Euler class of

The state of th

¹)See J.A. Thorpe [6]

TM and if M is compact and orientable, the Gauss-Bonnet theorem says that

$$\int_{M} f^* \alpha^{(n)} = \chi(M)$$

where $\chi(M)$ is the Euler-Poincaré characteristic of M and $f:M \rightarrow G_n(M)$ is an orientation of M, $\widetilde{G}_n(M)$ being the Grassmann bundle of the oriented n-planes tangent to M.

2. A vanishing theorem

We can now prove the following theorem ([3])

(2.1). Theorem

Let M be a riemannian smooth orientable manifold of dimension n which admits k complementary (smooth) distributions of oriented n_i -planes (i = 1,...,k). Then the real Pontrjagin classes $P_r(M)$ are null for $2r>max(n_1,...,n_k)$

Proof.

Let \tilde{E} be the principal fibre bundle of the orthonormal frames (associated to the tangent). Its structural group is $\tilde{G} = SO(n)$ (the rotation group). We recall that the Lie algebra $\tilde{\mathcal{Y}}$ of SO(n) can be identified with space of the skew-symmetric matrices of order n.

Let us consider the subbundle E of E formed of the frames "adapted" to the distributions, viz. the orthogonal frames $\{e_i\}(i=1,...,n)$ so that the vectors

$$\{e_{\alpha_{j}}\} \qquad \alpha_{j} = n_{1} + \dots + n_{j-1} + 1, \dots, n_{1} + \dots + n_{j} \qquad (n_{\circ} = 0)$$

form a basis for T^j. The bundle E can be regarded as having structural group