unique local solution $u \in S(r) \subset Y_{\infty}$.
PROOF. If $c(\bar{E})=\max \left\{c_{1}(\bar{\varepsilon}), c_{2}(\bar{E})\right\}$ then we ${ }^{\text {wean }}$ choose $\overline{\dot{c}}$ so that $c(\bar{t})<1$. Then, Lemma (7) shows that P maps $S(r)$ into itself and that P is strictly contractive over $S(r)$.

Remark (2). The nonlinear operator F is not Fréchet differentiable, contrary to what happens in the papers [1] and [2], where this fact allowed the assertion that the mild solution was also the strict solution of the problem (see [6]).

The results are so different because in paper [1] the operator F is mollified and in paper [2] we used the space $X=$ U.C.B. $\left(R^{3}\right)$ and $X_{0}=\left\{f: f e X, f(x, v, w)=0\right.$ if $\left.(v, w) \notin \bar{V}^{2}\right\}$
4. Positivity of the solution.

In this section we propose to prove that the solution of the problem (13) is positive if the initial condition u_{o} is positive.

This result is important from a physical point of view, since $u(x, v, w ; t) d x d v d w$ gives the expected number of vehicles that, at time t, have (i) position between x and $x+d x$
(ii) speed between v and $v+d v$, (iii) desired speed between w and $w+d w$.

Introduce the following closed positive cones:
$X_{0}^{+}=\left\{f e X_{0}: f(x, v, w) \geq 0\right.$ for a.e. $\left.(x, v, w) \in R \times \bar{v}^{2}\right\}$
$Y^{+}=\left\{u \in Y: u(t) e X_{0}^{+}\right.$for $\left.t \in[0, \bar{t}]\right\}$
and the relatively closed subsets:
$s^{+}(r)=s(r) \cap_{X_{0}^{+}}^{+}$
$S^{+}(r)=S(r)^{\cap}{Y^{+}}^{+}$.

Moreover define:

$$
Y_{\infty}^{+}=Y_{\infty} \cap Y^{+}
$$

Note that $Z_{0}(t)\left[X_{0}^{+}\right] \sqsubset X_{0}^{+}$but F does not map $D(F) \cap X_{0}^{+}$into X_{0}^{+}. If this last condition was satisfied it would easily follow that $u(\cdot) \in S^{+}(r)$ locally, when $u_{0} \in X_{0}^{+} \cap_{X_{\infty}}$ and $r>\left\|u_{0}\right\|_{\infty}$.

In order to prove that the solution is positive it is sufficient to prove that:
(14) there exists $a>0$ such that $F_{q}(u)=(a I+F)(u) \in X_{0}^{+}$for $u \in s^{+}(r)$ and that if we define

$$
\begin{aligned}
& T(t)=e^{-a t} Z_{0}(t) \quad \text { and } \\
& \left(P_{1} g\right)(t)=T(t) u_{0}+\int_{0}^{t} T(t-s) F_{1}(g(s)) d s
\end{aligned}
$$

(15) P_{1} maps $S(r)$ into itself.

These sufficient conditions are in [7], but for the reader's convenience we prove them in the appendix and we seize the opportunity to generalize some results.

Hence we have
Lemma (8). The assertions (14) and (15) are true.
PROOF
$a u+F(u)=q J_{1} u, J_{2} u+\left(a-q J_{3} J_{1} u\right) u$, so if $u \in s^{+}(r)$ in order to prove $a u+F(u) \geq 0$ a.e. it is sufficient to prove $q J_{3} J_{1} u \leq a$. Note that $q J_{3} J_{1} u \leq\|u\|_{\infty} \frac{d}{2} q \leq r \frac{d}{2} q$ for $u \in s(r)$ so the condition (14) follows if we take $a \geq r \frac{d}{2} q$.
To prove the condition (15) we put $b=\frac{1}{T}-a$ then, ifgeS(r), we have

$$
\left\|\left(P_{1} g\right)(t)\right\|_{\infty} \leq e^{b t}\left\|u_{0}\right\|_{\infty}+d r^{2} \int_{0}^{t} e^{b(t-s)} d s
$$

and thus
$\left.\| P_{q} g\right)(t) \|_{\infty} \leq c^{\prime}(\bar{t}) r$
where
$c^{\prime}(\bar{t})= \begin{cases}\frac{\left\|u_{0}\right\|_{\infty}}{r}+\left(\frac{\left\|_{u_{0}}\right\|_{\infty}}{r} b+d r\right) \frac{e^{b \bar{t}}-1}{b} & \text { if } b \neq 0 \\ \frac{\left\|u_{0}\right\|_{\infty}}{r}+d r \bar{t} & \text { if } b=0\end{cases}$
In each case we can have $c^{\prime}(\bar{t})<1$ provided $r>\left\|u_{0}\right\|_{\infty}$.
Hence we can conclude with the following
THEOREM (2). If $u_{0} \in X_{0}^{+} \cap_{X_{\infty}}$ and $r>\left\|u_{0}\right\|_{\infty}$ then the equation (13) has a unique local solution $u \in S^{+}(r)$.

Remark (3)For fixed \bar{t} and $r=\left\|u_{0}\right\|_{\infty}$ we can always choose a so as P_{1} maps $S(r)$ into itself. In fact if $g \in S(r)$ we have
$\| P, g)(t) \|_{\infty} \leq r+r(b+d r) \frac{e^{b \bar{t}}-1}{b} \quad$ for $t \in[0, \bar{t}]$
and so
$\left\|\left(P_{1} g\right)(t)\right\|_{\infty} \leq r$
for $t \in[0, \bar{t}]$
when
$b+d r \leq 0$, i.e. $a \geq \frac{1}{T}+d r$.
Nevertheless this result does not enable us to improve theorem (2) by removing the condition $r>\left\|u_{0}\right\|_{\infty}$, because it was used in theorem (1), from which the theorem (2) comes.

In other words given $[0, \bar{t}]$ and $r=\left\|u_{0}\right\|_{\infty}, P_{1}$ maps $S(r)$ into itself but P_{1} can be noncontractive.
5. Global mild solution.

As in [1] we introduce the functional

$$
J f=\int_{-\infty}^{+\infty} d x \int_{-\infty}^{+\infty} d v \int_{v_{1}}^{v_{2}} f(x, v, w) d w \quad \text { for } f \in X
$$

We have:

