3. Local mild solution.

In order to prove that (10) has a unique local solution, we consider the space $Y=C\left([0, \bar{t}], X_{0}\right)$ with the usual norm $\|u ; Y\|=\max \{\|u(t)\|, t \in[0, \bar{t}]\}$ and the non linear operator:

$$
\begin{align*}
& \text { 2) }[P(u)](t)=u_{1}(t)+\int_{0}^{t} Z_{0}(t-s) F(u(s)) d s \tag{12}\\
& \text { Then the equation (10) becomes }
\end{align*}
$$

$$
\begin{equation*}
u=P(u) . \tag{13}
\end{equation*}
$$

As $D(F) \neq X_{0}$ also $D(P)$ is different from Y and so it is natural to introduce the following sets:

$$
\begin{aligned}
& Y_{\infty}=C\left([0, \bar{t}] ; X_{0} \cap X_{\infty}\right) \quad \text { and } \\
& S(r)=\left\{f \in Y_{\infty}:\|f(t)\|_{\infty} \leq r \text { for } t \in[0, \bar{t}]\right\} . \\
& S(r) \text { is a closed subset of } Y .
\end{aligned}
$$

We propose to prove that if $u_{0} \in X_{0} \cap X_{\infty}$ and $r>\left\|u_{0}\right\|_{\infty}$ then P maps $S(r)$ into itself and is strictly contractive over $S(r)$. So we will be able to assert the existence of a unique soluction.

We will need the following lemmas.
Lemma (4). If $X_{0}^{\prime}=L^{1}\left(R \times \bar{V}^{2}\right)$ and $X_{\infty}^{\prime}=L^{\infty}\left(R \times \bar{V}^{2}\right)$ then $: J_{1}, J_{2}, J_{3} J_{1} \in B\left(X_{0}^{\prime}\right){ }^{\prime} B\left(X_{\infty}^{\prime}\right)$ and $\left\|J_{1} f| | \leq c| | f| | ;\right\| J_{2} f| | \leq c^{2} /{ }_{2}| | f| | ;\left\|J_{3} J_{7} f| | \leq \frac{d}{2}\right\| f \|$
$\left\|J_{1} f\right\|_{\infty} \leq c\|f\|_{\infty} ;\left\|J_{2} f\right\|_{\infty} \leq c^{2} / 2\|f\|_{\infty} ;\left\|J_{3} J_{1} f\right\|_{\infty} \leq \frac{d}{2}\|f\|_{\infty}$ where $c=v_{2}-v_{1}$.

PROOF.
If follows easily from the definitions

Lemma (5). F is a locally Lipschitz operator over $X_{o} \cap X_{\omega}$ and satisfies the following inequalities:
(a) $\|F(f)-F(g)\| \leq d\left(\|f\|_{\infty}| | g \|_{\infty}| | f-g| |\right.$
(b) $\|F(f)\|_{\infty} \leq d\|f\|_{\infty}^{2}$.

PROOF
If $f, g \in X_{0} \cap X_{\infty}$ then $f, g \in X_{0}^{\prime} \cap X_{\infty}^{\prime}$ and we can consider the operators J (that define F) as operators over X_{0}^{\prime} and X_{∞}^{\prime}. So using lemma (4) the result follows from the following inequalities
$\|f(f)-F(g)\| \leq\left\|J_{1} f \cdot J_{2}(f-g)\right\|+\left\|J_{1}(f-g) \cdot J_{2} g\right\|+\left\|g J_{3} J_{1}(f-g)\right\|+$

Lemma (6). (a) If $g \in Y_{\infty}$ with $\|g(s)\|_{\infty} \leq \alpha(s)$ for $s \in[0, \bar{t}]$ and $\alpha(s)$ is continuous then

$$
\left\|\int_{0}^{t} g(s) d s\right\|_{\infty} \leq \int_{0}^{t} \alpha(s) d s \quad \text { for } t \in[0, \bar{t}]
$$

(b) $\quad\left\|Z_{0}(t) f\right\|_{\infty}=e^{t / T}\|f\|_{\infty} \quad$ for $f \in X_{0} \cap X_{\infty}$ and $t \geq 0$

PROOF
The integral $\quad \beta(t)=\int_{0}^{t} g(s) d s$ is a strong Riemann integral in X_{0} and so it is the strong limit of the corresponding Riemann sums:

$$
B_{n}=\sum_{i=1}^{2^{n}}\left(s_{n, i}-s_{n, i-1}\right) g\left(\bar{s}_{n, i}\right) \quad n=1,2,3, \ldots
$$

where $s_{n, i}=i t / 2^{n}$

$$
i=1,2, \ldots, 2^{n}
$$

$$
s_{n, i-1} \leq \bar{s}_{n, i} \leq s_{n, i} .
$$

Now note that

$$
\left\|B_{n}\right\|_{\infty} \leq \sum_{i=1}^{2^{n}}\left(s_{n, i}-s_{n, i-1}\right) \alpha\left(\bar{s}_{n, i}\right) \leq \int_{0}^{t} \alpha(s) d s
$$

if we choose the $\bar{s}_{n, i}$ so that

$$
\alpha\left(\bar{s}_{n, i}\right)=\min \left\{\alpha(s) ; s_{n, i-1} \leq s \leq s_{n, i}\right\}
$$

The assertion now follows because $s\left(\int_{0}^{t} \alpha(s) d s\right)$ is closed in X_{0}.
(b) follows from the definition of $Z_{0}(t)$.

Lemma (7). If $u_{0} \in X_{0} \cap X_{\infty}$ and $r>\left\|u_{0}\right\|_{\infty}$ then:
(a) $Y_{\infty} \subset D(P)$
(b) $\left\|\left(P_{u}\right)(t)\right\|_{\infty} \leq c_{1}(\bar{t}) r \quad$ for $u \in S(r)$ where

$$
c_{1}(\bar{t})=\frac{\left\|u_{0}\right\|_{\infty}}{r}+(1+d r T)\left(e^{\bar{t} / T}-1\right)
$$

(c) $\|P(u)-P(w) ; Y\| \leq c_{2}(\bar{t})\|u-w ; Y\|$ for $u, w \in S(r)$ where $c_{2}(\bar{t})=2 d r \bar{t}$. PROOF
(a) If $u_{0} \in X_{0} \cap X_{\infty}$ then $u_{1} \in Y_{\infty}$ and from lemma (5) it follows that $F(u) e Y$ if $u \in Y_{\infty}$.

So $P u \in Y$.
(b) If $u \in S(r)$ we have, by Lemmas (5) and (6)

$$
\|P(u)(t)\|_{\infty} \leq e^{t / T}\left\|u_{0}\right\|_{\infty}+d r^{2} T\left(e^{t / T}-1\right) \leq\left\|u_{0}\right\|_{\infty}+\left(\left\|u_{0}\right\|_{\infty}+d r^{2} T\right)\left(e^{t / T}-1\right)
$$

(c) follows directly from (a) of Lemma (5) and from (b) of Lemma (2). THEOREM (1). If $u_{0} \in X_{0} \cap X_{\infty}$ and $r>\left\|u_{0}\right\|_{\infty}$ then the equation (13) has a
unique local solution $u \in S(r) \subset Y_{\infty}$.
PROOF. If $c(\bar{E})=\max \left\{c_{1}(\bar{\varepsilon}), c_{2}(\bar{E})\right\}$ then we ${ }^{\text {wean }}$ choose $\overline{\dot{c}}$ so that $c(\bar{t})<1$. Then, Lemma (7) shows that P maps $S(r)$ into itself and that P is strictly contractive over $S(r)$.

Remark (2). The nonlinear operator F is not Fréchet differentiable, contrary to what happens in the papers [1] and [2], where this fact allowed the assertion that the mild solution was also the strict solution of the problem (see [6]).

The results are so different because in paper [1] the operator F is mollified and in paper [2] we used the space $X=$ U.C.B. $\left(R^{3}\right)$ and $X_{0}=\left\{f: f e X, f(x, v, w)=0\right.$ if $\left.(v, w) \notin \bar{V}^{2}\right\}$
4. Positivity of the solution.

In this section we propose to prove that the solution of the problem (13) is positive if the initial condition u_{o} is positive.

This result is important from a physical point of view, since $u(x, v, w ; t) d x d v d w$ gives the expected number of vehicles that, at time t, have (i) position between x and $x+d x$
(ii) speed between v and $v+d v$, (iii) desired speed between w and $w+d w$.

Introduce the following closed positive cones:
$X_{0}^{+}=\left\{f e X_{0}: f(x, v, w) \geq 0\right.$ for a.e. $\left.(x, v, w) \in R \times \bar{v}^{2}\right\}$
$Y^{+}=\left\{u \in Y: u(t) e X_{0}^{+}\right.$for $\left.t \in[0, \bar{t}]\right\}$
and the relatively closed subsets:
$s^{+}(r)=s(r) \cap_{X_{0}^{+}}^{+}$
$S^{+}(r)=S(r)^{\cap}{Y^{+}}^{+}$.

Moreover define:

