One can easily verify that every element of \mathcal{C} is a right tail of S preordered with respect to relation defined in (j). On the other hand if (S, <) is a preordered set and \mathbb{R} is the set of the right tails of (S, <) then for every x,y e S the following properties hold

(e)
$$x \leq y$$
 iff $x \leq y(R)$ according to (j) and $x \leq y$ iff $x \leq y(R_0)$,

where \Re_0 is the set of the principal filters of (S, \leq) generated by an elment of S. And hence, as a consequence of (jj), the following property holds:

(ee)
$$x \leq y$$
 iff $y \leq x(\mathbb{R}_0^{\prime})$,

where \mathbb{R}' is the set of all set complements in S of the elements of \mathbb{R} .

Now we can give the following

THEOREM 1. Let $\mathscr{C} \leq \mathscr{P}(S)$ be, $Y \in \mathscr{C}$ and $y \in Y$. Then Y is a point closure in \mathscr{C} with respect to y iff y is minimum in Y with respect to relation defined in (j).

PROOF. In fact: y is minimum in $Y \iff \forall x eY : e_y e_x \iff \forall x eY$, $\forall ZeC_y : ZeE_x \iff \forall x eY, \forall ZeE_y : x eZ \iff \forall ZeE_y : Y eZ$. Q.E.D.

N. 3. A CHARACTERIZATION OF V-PRIME AND STRONGLY V-PRIME ELEMENTS OF A POSET.

Henceforth let (S, <) be a poset. Then we can consider the function

 $g: S \rightarrow P(S)$ mapping an element $x \in S$ into the set $g(x) = \{y \in S: x \neq y\} = S - r(x)$. Clearly f is an injective function; moreover $\forall x, y \in S \times y$ iff $g(x) \leq C$ $\leq g(y)$, in fact $x \leq y$ iff the principal filter r(x) includes the principal filter r(y), and hence x < y iff g(x) = S - r(x) c S - r(y) = g(y); thus g is an isomorphism from (S,<) onto (g(S),c). Now we want to prove the following.

THEOREM 2. The ordered pair ((g(S), c), g) is a U-proper set representation of (S,<).

PROOF. Since g is an isomorphism from (S,<) onto (g(S),c) we need only prove that (g(S), c) is a U-proper set poset. Thus if $Y \subset S$ then

$$= \bigcap_{x \in \mathcal{S}} (S - r(x)) = \bigcap_{x \in \mathcal{S}} q(x).$$

xer(Y) xer(Y)

In particular if
$$Y = \{y_1, ..., y_n\}$$
 and $A_i = g(y_i) = S - r(y_i)$ (i=1,...,n)

then

$$\prod_{i=1}^{n} A_i = \bigcap_{x \in r(Y)} g(x)$$

and hence $\bigcup_{i=1}^{n} A_i$ is equal to the set intersection of all g(x) such that $g(x) \ge \bigcup_{i=1}^{n} A_i$. Q.E.D.

Now we can give the following

THEOREM 3. Let c be an element of S and let c be not minimum in (S, \leq) . Then c is strongly v-prime in (S,<) iff for ever U-proper set representation $((f(S),\underline{c}),f)$ of $(S,\underline{<})$ f(c) is a point closure in f(S).

PROOF. Let f(c) be a point closure in f(S) for every U-proper set represent

tation $((f(S), \underline{c}), f)$. Now then we consider the U-proper set representation of theorem 2; thus, as a consequence of the fact that c is not minimum in (S, <), the set $\{yeS:c \neq y\}$ is different from \emptyset and it is a point closure in g(S).

- 7 -

Hence, as a consequence of theorem 1 and of (ee) in N. 2, g(c) has a maximum in (S, <), therefore c is a strongly v-prime element of (S, <).

Conversely let c be a strongly v-prime element in (S, \leq) ; in such a case the set {yeS:c \notin y} has a maximum b. Now let ((f(S), c), f) be an arbitrary u-proper set representation of (S, \leq) . Since $c \notin b$ then $f(c) \in f(b)$ and hence we can consider an element xef(c)-f(b). We want to prove that f(c) is a point closure with regard to x. In fact if Z is an element of f(S) such that $x \in Z$ then there exists $z \in Z$ such that f(z) = Z. Now then c < z; in fact assume, ab absurdo, that $c \notin z$, then $z \leq b$, thus $Z = f(z) \subset f(b)$ and hence xef(b). Since c < z iff

f(c) c f(z) = Z, the theorem follows.

Q.E.D. THEOREM 4. An element $c \in S$ is v-prime in (S, \leq) iff a **U**-proper set representation $((f(S), \leq), f)$ of (S, \leq) exists such that f(c) is a point closure in f(S).

PROOF. Let $((f(S), \leq), f)$ be a V-proper set representation of (S, \leq) such that f(c) is a point closure in f(S) with regard to x; moreover let y, z e S such that $c \notin y$ and $c \notin z$. Then $(f(c) \notin f(y)$ and $f(c) \notin f(z)$, thus $x \notin f(y)$ and $x \notin f(z)$; moreover (since $(f(S), \underline{c})$ is a V-proper set poset) $f(y) \cup f(z)$ is equal to set intersection of all f(t) including f(y) and f(z). As a consequence an element t e S exists such that $f(t) \supseteq f(\underline{x}) \cup f(y)$ and $x \notin f(t)$, thus $f(c) \notin f(t)$ and hence $c \notin t$ but $y \leq t$ and $z \leq t$. That means that the subset {s e S : $c \notin s$ } is v-directed.

Convensely let c be a v-prime element in (S, <) and ((f(S), c), f)

a **V**-proper set representation of
$$(S, <)$$
. If $f(c)$ is a point closure in

f(S) we have nothing to prove. If not let us consider the set X' = XU(X),

((cfr.[1], p. 62, proof of theorem 31), where $X = \bigcup_{t \in S} f(t)$, and the function f': $S \rightarrow \mathcal{P}(X')$ such that for every seS f'(s)=f(S) iff $c \neq s$ and f'(s) = f(s)U{X} iff $c \leq f(s)$. Clearly f' is an injEtive function and for every, $s_1, s_2 \in S \ s_1 \leq s_2$ iff, f'(s_1) $cf'(s_2)$, moreover f'(c) is point closure with regard to X in f'(S). Then we must only prove that ((f'(S), c), f') is a U-proper set representation of (S, <).

Now if $s_1, \ldots, s_n \in S$ then $\lim_{i=1}^{n} f(s_i)$ is equal to the set intersection of all the elements of f(S) that include every $f(s_i)$. Hence let's consider the following two cases:

CASE 1 : for every i = 1, ..., n; $c \not \leq i$. Then for every i = 1, ..., n

 $f'(s_i) = f(s_i)$, moreover (since c is v-prime in (S, <)) an element $s \in S$ exists such that $c \nleq s$ and for every $i=1, \ldots n$ $s_i < s$, thus f'(s) = f(s) hence $\prod_{i=1}^{n} f'(s_i) (\prod_{i=1}^{n} f(s_i)$ is equal to the set intersection of all the elements of f'(S) that include every $f'(s_i) (= f(s_i))$.

CASE 2: for some $i:c \leq x_i$. Then $f'(s_i) = f(s_i) \cup \{X\}$; moreover for every $s \in S$ such that f'(s) includes every $f'(s_i)$ one has $f'(s) \supseteq f'(s_i)$, thus $c \leq s_i \leq s$ and hence $f'(s) = f(s) \cup \{X\}$. Then in this case too we can conclude that $\bigcup_{i=1}^{n} f(s_i) (=\bigcup_{i=1}^{n} f(s_i) \cup \{x\})$ is equal to the set intersection of all the element of f'(S) including every $f(s_i)$. Q.E.D.

REMARK.

We observe that if (S, <) has at least a v-prime element then a

U-proper set representation $((f(S), \underline{C}), f)$ of (S, \leq) exists such that f maps every v-prime element of (S, \leq) in a point closure. In fact let A be the set of all v-prime elements of $(S, \leq), ((f(S), \underline{C}), f)$ a U-proper set representation of (S, \leq) and B the set of all the elements of A

mapped into a point closure. If B = A we have nothing to prove. Now we suppose that $B \neq A$ and

(m)
$$(\bigcup_{s \in S} f(s)) \cap (A-B) = \emptyset$$
 (3)

Then we consider the function if that maps every $s \in S$ into the set $f(s) \cup A_s$, where $A_s = \{y \in A - B : y \leq s\}$. Chearly f' is an injective function and for every $s_1, s_2 \in S$ $s_1 \leq s_2$ iff $f(s_1) \cup A_{s_1} \subseteq f(s_2) \cup A_{s_2}$. Moreover if s_1, \ldots, s_n are arbitrary elements of S then $i \stackrel{n}{=}_{i=1}^{n} (f(s_i) \cup A_{s_i}) = (i \stackrel{m}{\cup}_{i=1}^{n} f(s_i)) \cup (i \stackrel{n}{\cup}_{i=1}^{n} A_{s_i})$.

Now let Z be the set of all upper bounds of $\{s_1, \ldots, s_n\}$ in (S, \leq) . We want to prove that $\bigcap (f(z) \parallel A) = \prod (f(s_1) \parallel A) = \prod (f(s_1) \parallel f(s_2))$

$$zez = \frac{1}{z} = \frac{1}{z}$$

As a consequence of condition
$$(m) \underset{z \in Z}{\cap} (f(z)UA_z) = (\underset{z \in Z}{\cap} f(z))U(\underset{z \in Z}{\cap} A_z);$$

moreover we already know that $\underset{z \in Z}{\bigcap} f(z) = \underset{i=1}{\overset{n}{\bigcup}} f(s_i)$ and $\underset{z \in Z}{\bigcap} A_z = \underset{i=1}{\overset{n}{\bigcup}} A_{s_i}$; then it is sufficient to prove that $\underset{z \in Z}{\bigcap} A_z = \underset{i=1}{\overset{n}{\bigcup}} A_{s_i}$.

Now if $x \in \bigcap_{z \in Z_z}^{A}$ then x is a v-prime element of (S, \leq) such that $x \leq z$ for every z $\in Z$. Moreover Z is the set of all upper bounds of $\{s_1, \ldots, s_n\}$, then as a consequence of the definition of v-prime element $x \leq s_i$ for some i $\in \{1, \ldots, n\}$, thus $x \in \bigcup_{i=1}^n A_s$ and hence $\bigcap_{z \in Z} A_z \leq \bigcup_{i=1}^n A_s$. From this the enounced assertion follows.

REFERENCE

[1] D.DRAKE and W.J.THRON "On the representations of an abstract lattice as the family of closed sets of a topological space". Trans.of Amer.

Math. Soc. 120(1965), 57-71.

