One can easily verify that every element of C is a right tail of S preordered with respect to relation defined in (j). On the other hand if $(S,<)$ is a preordered set and R is the set of the right tails of $(S,<)$ then for every $x, y \in S$ the following properties hold
(e) $\quad x<y$ iff $x<y(R)$ according to (j), and $x<y$ iff $x<\mathcal{V}_{\sim}\left(\mathbb{R}_{0}\right)$, where \mathbb{R}_{0} is the set of the principal filters of (S, \leq) generated by an elment of S. And hence, as a consequence of ($j j$), the following property holds:
(ee) $x \leq y$ iff $y \leq x\left(R_{0}^{1}\right)$,
where \mathbb{R}_{0}^{\prime} is the set of all set complements in S of the elements of R_{0}.

Now we can give the following

THEOREM 1. Let $\mathcal{C} \leq \boldsymbol{P}(S)$ be, $Y \in \mathcal{Y}$ and $y \in Y$. Then Y is a point closure in \mathcal{Y} with respect to y iff y is minimum in Y with respect to relation defined in (j).

PROOF. In fact: y is minimum in $y \nLeftarrow \forall x \in Y: \varphi_{y} \varepsilon_{x}^{\varphi_{x}} \Leftrightarrow \forall x \in Y$, $\forall Z \epsilon C_{y}: Z \epsilon \epsilon_{x} \Longleftrightarrow \forall x \in Y, \forall Z \in Q_{y}: x \in Z \Longleftrightarrow \forall Z \in e_{y}: Y \in Z$.
Q.E.D.
N. 3. A CHARACTERIZATION OF V-PRIME AND STRONGLY V-PRIME ELEMENTS OF A POSET.

Henceforth let (S, \leq) be a poset. Then we can consider the function $g: S \rightarrow \mathscr{P}(S)$ mapping an element $x \in S$ into the set $g(x)=\{y \in S: x \neq y\}=S-r(x)$, Clearly f is ijective function; moreover $\forall x, y \in S$ $x<y$ iff $g(x) \leq$
$\leq g(y)$, in fact $x \leq y$ iff the principal filter $r(x)$ includes the principal filter $r(y)$, and hence $x \leq y$ iff $g(x)=S-r(x) \subseteq S-r(y)=g(y)$; thus g is an isomorphism from (S, \leq) onto $(g(S), C)$. Now we want to prove the following.

THEOREM 2. The ordered pair $((g(S), c), g)$ is a U-proper set representation of (S, \leq).

PROOF. Since g is an isomorphism from (S, \leq) onto $(g(S), \underline{C}$ we need only prove that $(g(S), \underline{c})$ is a U-proper set poset. Thus if $Y \subseteq S$ then
 $=\bigcap_{x \in r(Y)}(S-r(x))=\bigcap_{x \in r(Y)} g(x)$.

In particular if $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $A_{i}=g\left(y_{i}\right)=S-r\left(y_{i}\right) \quad(i=1, \ldots, n)$
then

$$
\bigcap_{i=1}^{\cup} A_{i}=\bigcap_{x \in r(Y)}^{g(x)}
$$

and hence $\bigcup_{i=1}^{n} A_{i}$ is equal to the set intersection of all $g(x)$ such that $g(x) \geq \bigcap_{i=1}^{n} A_{i}$.

Now we can give the following

THEOREM 3. Let c be an element of S and let c be not minimum in (S, \leq). Then c is strongly v-prime in (S, \leq) iff for ever U-proper set representation $((f(S), \underline{G}), f)$ of $(S, \leq) f(c)$ is a point closure in $f(S)$.

PROOF. Let $f(c)$ be a point closure in $f(S)$ for every U-proper set represen tation $((f(S), \underline{c}), f)$. Now then we consifar the U-proper set representation of theorem 2; thus, as a consequence of the fact that c is not minimum in (S, \leq), the set $\{y \in S: c \neq y\}$ is different from \emptyset and it is a point closure in $g(S)$.

Hence, as a consequence of theorem 1 and of (ee) in N. 2, g(c) has a maximum in ($S, \underline{\leq}$), therefore c is a strongly v-prime element of ($S, \leq \leq$).

Conversely let c be a strongly v-prime element in ($\mathrm{S}, \underline{\leq}$); in such a case the set $\{y \in S: C \nmid y\}$ has a maximurn b. Now let $((f(S), \underline{E}), f)$ be an arbitrary u-proper set representation of (S, \leq). Since $c \neq b$ then $f(c) \underline{\epsilon} f(b)$ and hence we can consider an element $x \in f(c)-f(b)$. We want to prove that $f(c)$ is a point closure with regard to x. In fact if Z is an element of $f(S)$ such that $x \in Z$ then there exists $z \in Z$ such that $f(z)=Z$. Now then $c \leq z$; in fact assume, ab absurdo, that $c \neq z$, then $z \leq b$, thus $Z=f(z) \subseteq f(b)$ and hence $x \in f(b)$. Since $c \leq z$ iff $f(c) \subseteq f(z)=Z$, the theorem follows.

THEOREM 4. An element $c \in S$ is v-prime in (S, \leq) iff a U-proper set representation $((f(S), \leq), f)$ of (S, \leq) exists such that $f(c)$ is a point closure in $f(S)$.

PROOF. Let $((f(S), \leq), f)$ be a U-proper set representation of (S, \leq) such that $f(c)$ is a point closure in $f(S)$ with regard to x; moreover let $y, z \in S$ such that $c \nmid y$ and $c \neq$. Then $(f(c) \underset{f}{¢}(y)$ and $f(c) \underset{\notin}{\boldsymbol{f}}(z)$, thus $x \notin f(y)$ and $x \notin f(z)$; moreover (since ($f(S), \subseteq$ is a \cup-proper set poset) $f(y) \cup f(z)$ is equal to set intersection of all $f(t)$ including $f(y)$ and $f(z)$. As a consequence an element $t \in S$ exists such that $f(t) \supseteq f(\mathbb{z}) \cup f(y)$ and $x \notin f(t)$, thus $f(c) \not \subset(t)$ and hence $c \neq t$ but $y \leq t$ and $z \leq t$. That means that the subset $\{s \in S: c \neq s\}$ is v-directed.

Convensely let c be a v-prime element in (S, \leq) and $((f(S), C), f)$ a \cup-proper set representation of (S, \leq). If $f(c)$ is a point closure in $f(S)$ we have nothing to prove. If not let us consider the set $X^{\prime}=X U\{X\}$,
((cfr. [1], p. 62, proof of theorem 31), where $X=\bigcup_{t \in S} f(t)$, and the function $f^{\prime}: S \rightarrow\left(X^{\prime}\right)$ such that for every $s \in S f^{\prime}(s)=f(S)$ iff $c \not \ddagger s$ and $f^{\prime}(s)=f(s) \cup\{X\}$ iff $c \leq f(s)$. Clearly f^{\prime} is an injetive function and for every, s_{1}, s_{2} e $S s_{1} \leq s_{2}$ iff, $f!\left(s_{1}\right)$ ef' $\left(s_{2}\right)$, moreover $f^{\prime}(c)$ is point closure with regard to X in $f^{\prime}(S)$. Then we must only prove that $\left(\left(f^{\prime}(S), \subseteq\right), f^{\prime}\right)$ is a U-proper set representation of ($\mathrm{S}, \underline{\text { 人 }}$).

Now if $s_{1}, \ldots, s_{n} \in S$ then $\bigcup_{i=1}^{n} f\left(s_{i}\right)$ is equal to the set intersection of all the elements of $f(S)$ that include every $f\left(s_{i}\right)$. Hence let's consider the following two cases:

CASE 1 : for every $i=1, \ldots, n$: $c \nless s_{i}$. Then for every $i=1, \ldots, n$ $f^{\prime}\left(s_{i}\right)=f\left(s_{i}\right)$, moreover (since c is v-prime in (S, \leq) an element $s \in S$ exists such that $c i s$ and for every $i=1, \ldots n \quad s_{i} \leq s$, thus $f^{\prime}(s)=f(s)$ hence $\bigcup_{i=1}^{n} f^{\prime}\left(s_{i}\right)\left(\hat{\bar{U}}_{i=1}^{n} f\left(s_{i}\right)\right.$ is equal to the set, intersection of all the elements of $f^{\prime}(S)$ that include every $f^{\prime}\left(s_{i}\right)\left(=f\left(s_{i}\right)\right)$.

CASE 2 : for some $i: c \leq x_{i}$. Then $f^{\prime}\left(s_{i}\right)=f\left(s_{i}\right) U\{X\}$; moreover for every $s \in S$ such that $f^{\prime}(s)$ includes every $f^{\prime}\left(s_{j}\right)$ one has $f^{\prime}(s) \geq f^{\prime}\left(s_{i}\right)$, thus $c \leq s_{i} \leq s$ and hence $f^{\prime}(s)=f(s) \cup\{X\}$. Then in this case too we can conclude that $\prod_{i=1}^{n} f^{\prime}\left(s_{i}\right)\left(\sum_{i=1}^{U} f\left(s_{i}\right) \cup\{x\}\right)$ is equal to the set intersection of all the element of $f^{\prime}(S)$ including every $f\left(s_{j}\right)$. Q.E.D.

REMARK.

We observe that if (S, \leq) has at least a v-prime element then a U-proper set representation ($(f(S), S, f)$ of (S, \leq) exists such that f maps every v-prime element of (S, \leq) in a point closure. In fact let A be the set of all v-prime elements of $(S, \leq),((f(S), \subseteq), f)$ a U-proper set representation of (S, \leq) and B the set of all the elements of A
mapped into a point closure. If $B=A$ we have nothing to prove.
Now we suppose that $B \neq A$ and

$$
\begin{equation*}
(m) \quad\left(\cup_{s \in S} f(s)\right){ }^{\prime}(A-B)=\varnothing \tag{3}
\end{equation*}
$$

Then we consider the functionf f^{\prime} that maps every $s \in S$ into the set $f(s) \cup A_{s}$, where $A_{s}=\{y \in A-B: y \leq s\}$. Ckarly f^{\prime} is an injective function and for every $s_{1}, s_{2} \in S \quad s_{1} \leq s_{2}$ iff $f\left(s_{1}\right) \cup A_{s_{1}} \subseteq f\left(s_{2}\right) \cup A_{s_{2}}$. Moreover if s_{p}, \ldots, s_{n} are arbitrary elements of s then ${\underset{i=1}{n}\left(f\left(s_{i}\right) \cup A_{s_{i}}\right)=\left({ }_{i=1}^{n} f\left(s_{i}\right)\right) \cup\left({ }_{i}^{n}=A_{s_{i}}\right) .}^{n}$

Now let Z be the set of all upper bounds of $\left\{s_{1}, \ldots, s_{n}\right\}$ in ($S, \underline{\leq}$). We want to prove that $\left.{ }_{z \in Z}\left(f(z) \cup A_{z}\right)=\prod_{i=1}^{n}\left(f\left(s_{i}\right) \cup A_{s_{i}}\right)=讠_{i=1}^{n}\left(f\left(s_{i}\right)\right) \cup \bigcup_{i=1}^{n} A_{i}\right)$.

As a consequence of condition $(m){ }_{z \in \mathcal{Z}}\left(f(z) \cup A_{z}\right)=\left(\bigcap_{z \in Z} f(z)\right) \cup\left(\bigcap_{z \in Z^{A} z}\right)$: moreover we already know that ${ }_{z \in \hat{Z}} f(z)=\sum_{i=1}^{n} f\left(s_{i}\right)$ and ${ }_{z \in Z} A_{z} A_{i=1}^{n} A_{i}^{n}$; then it is sufficient to prove that ${ }_{z \in \mathcal{Z}} A_{z} c_{i} \overbrace{i=1}^{n} A_{i}$.

Now if $x \in \bigcap_{Z \in Z} Z_{z}$ then x is a v-prime element of (S, \leq) such trat $x \leq z$ for every $z \in Z$. Moreover Z is the set of all upper bounds of $\left\{s_{1}, \ldots, s_{n}\right\}$, then as a consequence of the definition of v-prime element $x \leq s_{i}$ for some $i \in\{1, \ldots, n\}$, thus $x \in \in_{i=1}^{n} A_{i}$ and hence $\cap_{z \in Z} Z_{z} s_{i} \sum_{i=1}^{n} A_{i}$ From this the enounced assertion follows.

REFERENCE

[1] D.DRAKE and W.J.THRON "On the representations of an abstract lattice as the family of closed sets of a topological space". Trans.of tier. Math. Soc. 120(1965), 57-71.

