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Proof. By putting n=l in (5.5), we obtaln

(5.11)

rx

-t -x
dt e ~(a,e,y;t) - e ~(a,e,y;x)-~(a+e,e,y;x) +

'~(a+e,B,y+l;x)-r(a,x).

In virtue of Proposition 1.1 the relation (5.11) is

valid also when x=O. Using then (5.4) the assertion is

proved.

6. SOME FUNCTIONS AND RELATIONS CONNECTED WITH THE ~-FUNCTION.

a) "Case" y = O.

Obviously one has ~(a,e,O;x) - O.

b) "Case" y = l.

For y = l the function (1.6) specializes to the in­

complete r-function. In fact, we have

(6.1) ~(a,e,l;x) =
(
~

a-e-l -t
Jdt t e = rea-e,x).

x

c) "Case" y = n (positive integer).

As we have already noted (see Sec.3), the function

(1.6) can be expressed as a finite sum of incomplete

r-functions.

d) "Case" y = -l, a = n +1, e = o.

For y = -l the function (1.6) becomes

(6.2)
(

~(a,e,-l;x) = - Jdt
x

a-l
t

•
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Putting in (6.2) a = n + l (n positive integer) and

a = o we get

(6.3)

where

ljI(n+l, O, -l;x) =-D(n, x) ,

(6.4)
('"

D(n,x) - Idt
) x

t
e -l

1S a function introduced by Debye in his theory of

specific hea t of solids [18J. From now on, we shall call

(6.4) the incomplete Debye function.

Remark 6.1. For x = O and n ~ l the function (6.3)

becomes

(6.5) ljI(n+l,O,-l;O) = -D(n,O) - -
('"

I dt
) o

- -n! ç(n+l) ,

where ç(z) is the Riemann zeta function •
•

More generally, from (6.2) we deduce that

(6.6) ljI(a,O,-l;O) = -

for a > l.

(a>

/dt
) o

a-l
t

t
e -l

• -r(ah(a),

Remark 6.2. We shall calI generalized incomplete

Debye function, the integraI
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(6.7)
('"

Idt
J

x

a-l
t
t

e -l
,

which appears on the right-hand side of (6.2). Using the

symbol D(a-l, x) to denote (6.7), we have

(6.8)

from (6.2).

~(a, O, -l; x) = -D(a,x) ,

Remark (6.3). Let us point out that one is able to

evaluate the sum of the series on the right of (3.3), for

any y = -n, which is also an arbitrary negative integer,

in terms of a combination of incomplete Debye functions and

other known functions. In the special case y = -l, taking

into account (6.8) we obtain

(6.9) D(a-l, x) = L
n=l

r(a,nx)
a

n
,

for each x > o, from (3.3).

Furthermore, in view of (6.6) and (6.8), from (3.3)

we find the known expanslon for the Riemann zeta function:

(6.10) ç (a) -
l- r (a)

~(a,O,-I;O) - r
n=l

l
a

n
,

for a > l.

To conclude the case d), we notice that (5.5), for
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in terms of the incomplete Debye functionl
'n+l '
J
namely

provides an
ID

L
j=l

(6.4),

y = -l, a = 0, x = ° and a = n + l (n positIve integer)

integraI representation for the finite sum

l
'n+l
j

-
00

m ( -mt
-I I dt e D(n,t).
n. J

o

e) "Case" y = _ l
2 , a = o.

For a = ° and y = _ 1
2 , it also exists the integraI

on the right of (1.6) for any a > +! when x = O. Funher­

more using the series expansion (3.1) one has

(6.11) 1/J(a,O,-! ;0) -
(2n-l)! !

(2n) ! !
l
a

n
•

If we now de fine the function

(6.12) 2(a) - -
l

r (a)
Ha,O,-LO) ,

the relation (6.11) glves

(2n-l)! !

(2n)!!

l
a

n
,

for a > !.

f) "Case" a = ° and CI> max(O, ~y) (yf 0,1,2, ... ).

Both the series on the right of (6.10) and (6.13)

can be considered as special cases of the more generaI
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•serles:

(6. 14 ) I
n=l

r(n-y)

r(-y)n!

1
a

'1

,

which converges for any a > max (O, -y). From (3.3), we

deduce that the sum of this series is given by the function

- l

rea)
ljI(a,O,y;O).

In order to show that the serles (6.14) is convergent,

1et us determine the asymptotic expansion of r(n-y)
n I ~ 1

for 1arge n. In doing so, it is enough to reca11'that l19

(6.15)
-

r('!z+b) " 12lT
-az az+b-l

e (az) ,

for z ->- "', larg zl <lT and a > O.

Using (6.15), we thus have

(6.16)
r(n-y)

n!
,

for 1arge va1ues of n.

Therefore, the convergence of the serles (6.14) is

assured if a > -y.

g) "A functiona1 re1ation for the pcilygamma functions".

The properties of the function ljI(a,S,y;x) defined

according to (1.6) can be usefu11y exp10ited in order

to re-derive a we11-known functiona1 re1ation for the po1y­

gamma functions:
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dn + 1

n+1
dx

r (x) ,

where n = 1,2,3, '" and x r 0,-1,-2, ....

More specifica11y, we wi11 show that

PROPOSITION 6.S. "The following functiona1 re1ation ho1ds:

(6.18) 1jJ(n) (m+1) = (,.1)nnl{-ç(n+1)+
m

L
j=l

l
--=--} ,
.n+1
J

where m is a non-negative integer and ç(n+1) 15 the zeta
•

Riemann function".

In doing so, 1et us start off with the integraI re­

presentation L20J

(6.19)

Since

(_1)n+1
(00

Idt
) o

n -(m+1)t
t e

-t
1- e

•

(6.20)
d

dt
1jJ(a,O,-l;t) =

a-l -t
t e

-t
1- e

,

from (6.19) we have

(6.21) (_1)n+1
(00

Idt
) o

-mt
e

d
dt 1jJ(n+1,0,-1;t) ,

for a = n+1.

Integrating by parts, Eq.(6.21) yie1ds

(6.22)
(n) n+ l - ('"

1jJ (m+1)=(-1) -1jJ(n+1,0,-1;0)+mldt
- ) o

--mt I
e 1jJ(n+1,0,-1;t)

-
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In virtue of corollary 5.4 and theorem 5.5, the

integraI on the right of (6.22) reads

(6.23) -mt
e ljI(n+~.O,-l;t) -

m
- ljI(n+l,O,-l;O) - I

k=O

m

k
lHn+l ,0,k-1 ;0) -ljI (n+l,O,k;O)] .

If we set apart the term of (6.23) corresponding to k=O,

having in mind that ljI(n-l,O,OjO) = O and resorting to the

recurrence relation (4.1) far a = n and y = k, Eq.(6.23)

reads

(6.24 )
('"

mldt
) o

m-mt ke ljI(n+l,O,-ljt)= I (-l)
k=l

m

k

nk ljI(n,O,kjO).

Since (see (3.4))

•

J

(6.25) ljI(n,O,k;O) =(~-l)!

k . l k'
I (_1))+

j=l

l
.n
J

,

Eq. (6.24) becomes

'"
(6.26) dt -mt ljI (n+1,O, -l; t)m e -

o
( -l) k k km m

(_1)j+1 ln! I I- k •.nk=l k j=l •
) )

By interchanging the summations in (6.26), with the help

of the identity
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l-
k

k l k-1
- -• ,

• J j -lJ

we are 1ed to the expressicn

~

(6.27) mrdt
-mte ~(n+1.0,-1;t) -

) o

m (_1)j+1 m
(_1/+1

m k-1
-n! I I- .n+1

j =.1 J k=j k j-1

At this point, we need to show two 1emmas, name1y:

Lemma 6.5

"Suppose that j and m are positive integers such

that l ~ j .~ m-L Then one has

(6.28)
m

I
k=j

m ( k

k j
- O."

Proof. Notice that

(6.29)
m

k

k

•

J

=

m

•

J k-j
•

As a consequence, we can write

(6.30)
m m
I (_1/+1

k=j k

k m
=

• •

J J

m m-J
I (_1/+1

k=j k-j
,

fTOm which, by putting h = k-j and taking into account

the hypothesis m - J ~ l, one fina11y gets
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(6.31)

Lemma 6.6

m

k

k

•

J

m

J h
=0 •

"Let j and m be any pair of positive integers such

tha t l ~ j " m. -rl.em- eme. fi.a..<:J

(6.32)
m

k

k-l

j-l

j + l"
(-l)

Proof. By putting

m
(_l)k+l

m k-l
(6.33) fU) - I •

k=j k j-l

for • writeconven~ence, we can - -

f(j)+f(j+l)=(-l)j+l
m m

(_l)k+l
m

k-l) + k-l
(6.34) + l:

• k=j+l kJ j-l J
- -

m
l: (_l)k+l

k=j

m

k

k

••

J

where we have used the identity

(6.35) k-l ì k-l k+ = •
• •

j -l J J J

On the basis of Lemma 6.5 from Eq. (6.34) we find

(6.36) fU) + f(j+l) = 0,

for l < j ~ m-l.
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Since f(l)=l, Eq. (6.36) tells us that

. + ,

(6.37) fU) = (_l)J··· ,

where j = 1,2, ... , m-l.

We complete the proof observing that the relation

(6.37) also holds for j=m. In fact, putting j=m-l we

have from (6.36) and (6.37):

f(m)
m+l

= -f(m-l) = (-l) .

Now let us go back to Eq. (6.28). Using the result

(6.3~), Eq. (6.28) becomes

(6.38)
r~

m[dt
) o

-mt
e lji(n+l,O,-l;t) - -n!

m

I
j=l

l
. n+ l
J

•

Then/making the substitution (6.38) into Eq. (6.23), we

obtain

(6.39) lji(n)(m+l)=(_l)n ~(n+l,o,-l;O)
m

+ n! I
j=l

l
. n+l
J

-
•

Recalling that (see (6.10));

ç(n+l) = - l
~71 lji(n+l,O,-l;O) ,

n.

Eq. (6.39) finally produces the relation (6.18).

Remark 6.7

Using the identity
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k ! k-1
k

(- -, ,
J

J j-1
\

Eq. (6.32) reads

(6.40)
m

L.
k=j

( -l

k

k+1
)

k

J

( -l )j+1

J
•

By putting h=k-j into (6.40), with the help of (6.29) one has

(6.41)
m

J

m-J

2:
h"'O

l

h+j

m-J (-1)
j+1

- •
J

h

By putting 1fi (6.41) n = m-J, we are led to the formula

'n
n

(_1)h l l
(6.42) L- I- -

b+j n+j
,

h"'O J
h ,

J

which may be considered as a generalization of the well-known formula

n
n (-d'2:- l

-
n + l

,
h"'O h + l

h

deducible from (6.42) when J = 1.


