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Proof. By putting n=1 in (5.5), we obtain

J dt e
X

_..t -
b(a,B,yst) = e © p(a,B,y;X)-w(a+B,B,y;X) +

.11
(5.11) +y(a+B,B,y+tl;x)-T(a,X).

In virtue of Proposition 1.1 the relation (5.11) is

valid also when x=0. Using then (5.4) the assertion 1s

proved.

6. SOME FUNCTIONS AND RELATIONS CONNECTED WITH THE y¢-FUNCTION.

a) '"Case'" vy = 0.
Obviously one has y(a,B,0;x) = O,
b) "Case" «y = 1.

For vy = 1 the function (1.6) specializes to the in-

complete TI'-function. In fact, we have

(% —ael -
(6-1)  ¥(a,8,15x) = |dt (@ Bt L ra-g,x).
X

c) "Case'" y = n (positive integer).

As we have already noted (see Sec.3), the function

(1.6) can be expressed as a finite sum of incomplete

r-functions.

d) "Case" y = -1, o« = n +1, B = 0.
For vy = -1 the function (1.6) becomes
rm tﬂ—l
(6.2) y(a,B,-1;x) = - Jdt < .
X e t -1
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Putting in (6.2) o« = n + 1 (n positive integer) and

B = 0O we get

(6.3) ¢(n+l, O, -1;x) ==D(n, x) ,
where

(% tn
(6.4) D(n,x) = Idt —

J:-: e -1

is a function introduced by Debye in his theory of

specific heat of solids [18]. From now on, we shall call

(6.4) the incomplete Debye function.

Remark 6.1. For x = 0 and n > 1 the function (6.3)

becomes

(6.5) y(n+1,0,-1;0) = -D(n,0) = - | dt = -n! r(n+l) ,

where z(z) 1s the Riemann zeta function.

More generall}, from (6.2) we deduce that

(
(6.6) ¥(a,0,-1;0) = - Jdt = -T(a)z(a),
QO

for Q > 1.

Remark 6.2. We shall call generalized incomplete

Debye function, the integral




rm tﬂ'].
(6.7) |dt n :

/ e -1

X

which appears on the right-hand side of (6.2). Using the
symbol D(a-1, x) to denote (6.7), we have

(6.8) y(a, O, -1; x) = -D(a,x) ,

from (6.2).

Remark (6.3). Let us point out that one 1is able to

evaluate the sum of the series on the right of (3.3), for
any y = -n, which is also an arbitrary negative 1nteger,

in terms of a combination of incomplete Debye functions and
other known functions. In the special case y = -1, taking

into account (6.8) we obtailn

r (@,nx)

(6.9) D(a-1, x) =

il =~ 8

for each x > 0, from (3.3).
Furthermore, in view of (6.6) and (6.8), from (3.3)

we find the known expansion for the Riemann zeta function:

(6.10) (o) = - — ¥(a,0,-1;0) = ) - ’
n=1

I (a) o

for o« > 1.

To conclude the case d), we notice that (5.5), for



y = -1, 8 =0, x =0 and « = n + 1 (n positive 1integer)

provides an integral representation for the finite sum

m

) ';+l , in terms of the incomplete Debye function

=1 ]

(6.4), namely

m 1 S
m -mt
) e = EI' dt e D(n,t).
=1 4 ‘o
e) "Case'" y = =3, B = 0.
For B = O and vy = -3, 1t also exists the integral

on the right of (1.6) for any o« > +] when x = 0. Furter-
more using the series expansion (3.1) one has

(6.11) ¥(2,0,-3;0) = -T(a) ) (Z?Eigii “%_

n=1 n

If we now define the function

(6.12) Z2(a) = - ——  y(a,0,-13;0),

I'(a)

the relation (6.11) gives

(2n-1)!! 1
1 (2n)!! n

Z(a) =

Nt~ 8

for a >

b=
*

f) "Case'" B = 0 and & > max(0, -y) (y# 0,1,2,...).
Both the series on the right of (6.10) and (6.13)

can be considered as special cases of the more general
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series:

r(n-vy) 1
1 r(-y)n! n

(6.14)

N t~1 8§
QR
L

which converges for any o > max (0, -y). From (3.3), we

deduce that the sum of this series is given by the function

1
- lP(G,O:Y;O)-
r{a)
In order to show that the series (6.14) is convergent,
let us determine the asymptotic expansion of F(E}Y)

for large n. In doing so, 1t is enough to recall that ngl

—_ - -1
(6.15) T (az+b) ~ V27m e az(az)az+b ‘

for z » =, |arg z| <m and a > O,

Using (6.15), we thus have

(6.16) rn-y) & oom™h

n!

for large values of n.

Therefore, the convergence of the series (6.14) 1s

assured 1f o > -vy.

g) "A functional relation for the paygamma functions' .

The properties of the function y(a,B,y;X) defined
according to (1.6) can be usefully exploited 1in order
to re-derive a well-known functional relation for the poly-

gamma functions:



6.17) W)= ——"th rx) ,

where n = 1,2,3, ... and x # 0,-1,-2, ... .
More specifically, we will show that

PROPOSITION 6.5. "The following functional relation holds:

m

6.18) 3™ @e1) = -1l (mer)r [ )
=1 ]

where m is a non-negative integer and z(n+l) 1s the zeta

Riemann function'.

In doing so, let us start off with the integral re-

presentation [20:]

r'm Il '(Hl'*’l)t
(6.19) y™@me1) = DM Jar S—
o 1- e
Since
a-1 -t
(6.20) —& 4(a,0,-1;1) = ——=2—
dt 1- e

from (6.19) we have

(
(6.21) w(n)(m+l) = (-1)n+1 | dt e It y(n+l1,0,-1;t) ,
! o

for o = n+l.

Integrating by parts, Eq.(6.21) yields

o

( -
(6.22) w(nj(m+1)=(-l)n+1 -y (n+1,0,-1;0)+m|dt e mt¢(n+l,0,-l;t)
) -

= O



In virtue of corocllary 5.4 and theorem 5.5, the
integral on the right of (6.22) reads

(> -
(6.23) m |dt e mt y(n+.,0,-15t) =

‘o

m m - -
= ¢(n+l;or'1;0) - E (_l)k( ) IP(H*l:O:k'l;OJ'IP(H*l:O:k;O) »
k=0 k - -

If we set apart the term of (6.23) corresponding to k=0,

)

having in mind that y(n-1,0,0;0) O and resorting to the

recurrence relation (4.1) for ¢« = n and y = k, Eq.(6.23)

reads

(= -mt " k{ ™\n
(6.24) m|dt e  y(n+l,0,-1;t)= ) (-1) ” y(n,0,k;0).
/o k=1 k

Since (see (3.4))

k
(6.25)  ¢(n,0,k;0) =(mn-1)! )

(_1)j+1(k)__l_ |
J

1
Eq. (6.24) becomes

(6.26) mj dt e-mt p (n+1,0,-1;t) =

a7 _(]-(_1)_]((“1) lg(_l)jﬂ(k)_%‘

k /] j=1 j J

By interchanging the summations in (6.26), with the help

of the identity



we are led to the expressicn

r -
(6.27) m|dt e
JE}

I

Yy (n+1,0,-1;t)

m ] +1
— _nl z -———-———-—C-l):l
o .n+l
j=1 ] k

N ~— =

m k-1
()
j k j=-1

At this point, we need to show two lemmas, namely:

Lemma 6.5

"Suppose that j and m are positive integers such
that 1 € j < m = 1. Then one has

s —

(-1)k+1( m)( k)= 0.
] k/\ ]

Proof. Notice that

e (0 GIE

As a consequence, we can write

. m k m m m-j
CH) B
j SANE TR T B k-

frmm which, by putting h = k-j and taking into account

(6.28)

e 3

k

(6.30)

N~ 3

k

the hypothesis m - j 2 1, one finally gets



Lemma 6.6

'"Let ] ggg_m be any pair of positive integers such

that 1 < jJ < m, Tﬂem..awe.ga_d

m m k-1 oy
(6.32) G R - (-1t
k= )

-1

Proof. By putting

m m k-1
(6.33) £GG) = 3 (-1*! ( )( ) ...
k=j k j-1

for convenience, we can write

. m m
(6.34) f(j)+f(j+1)=(-l)3+1( ) + Z (_1)k+1(
J k

m m k
- E(-le”( )( ) ,
k=3j k J

where we have used the identity

(6.35) (ji)*“ (kgl) _(IJ()

On the basis of Lemma 6.5 from Eq. (6.34) we find

(6.36) £(3) + £()+1) = 0O,

for 1 < jJ < m-1.
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Since f(l1)=1, Eq. (6.36) tells us that

L 1

(6.37) £(j) = (-1)°

3

where j = 1,2,..., m-1.

We complete the proof observing that the relation
(6.37) also holds for j=m. In fact, putting j=m-1 we
have ftrom (6.36) and (6.37):

f(m) = -f(m-1) = (-1)™*,

Now let us go back to Eq. (6.28). Using the result
(6.32), Eq. (6.28) becomes

I'm —mt
(6.38) m|dt e v (n+1,0,-1;t) = -n!

JG J

N o~ 3
p=d

.n+1

Then}making the substitution (6.38) into Eq. (6.23), we
obtain

— m -
(6.39] w(n)(m+1)=(—1)n y(n+l1,0,-1;0) + n! E

- i=1  j -

Recalling that (see (6.10)):

2(n+1) = - = y(n+1,0,-10) ,

Eq. (6.39) finally produces the relation (6.18).

Remark 6.7

Using the identity



Eq. (6.32) reads

m k+1 m | k '
(6.40) Z LE_l ) ( } ( _ -% )J+1 |
K J

By putting h=k-j into (6.40), with the help of (6.29) one has

* m m- ] m—j JH+i
+1 — i —
(6.41) (<1)° R Ve - LU .
* h+ ] J
J h=0 h

By putting in (0.41) n = m-j, we are led to the formula

Il
(6.42) 3 (-1 = = L —
he=0 (1t ] ] n+J
h .
J

n ¥ .
> = - 5
b
h=0 h + 1 0+
h

deducible from (6.42) when j = 1,



