The extension of the function (1.6) and its basic relations to complex variables will be given elsewhere.

Let us close this section with a brief remark. As a wide class of known functions can be interpreted in the light of group theory (see, ©or example, [13]), so one might investigate whether the same happens for the function (1.6). We shall be concerned with this challenging prospect in the near future.
2. SELF-SIMILAR SOLUTIONS FOR THE NONLINEAR WAVE EQUATION $u_{t x}=a e^{-u}+b u^{\beta-1}$.

Consider the nonlinear partial differential equation (1.7) in $1+1$ space-time coordinate system, where $u=u(x, t)$ and a, b and $\mathrm{B} \neq 0$ are real parameters.

We shall look for self-similar solutions of (1.7). In doing so, let us put $u=u(\xi)$ in (1.7) where $\xi=x+v t$. Then (1.7) transforms into the ordinary differential equation (reduced form of (1.7)):
(2.1) $\quad \frac{1}{2} v u_{\xi}^{2}=-a e^{-u}+\frac{b}{\beta} u^{\beta}+c$,
c being an integration constant.
By choosing $c=0$ and

$$
\begin{align*}
& \frac{1}{2 a} v=k>0, \tag{2.2}\\
& \frac{b}{\beta a}=1, \tag{2.3}
\end{align*}
$$

(2.1) yields
(2.4) $\lambda\left(\xi-\xi_{0}\right)= \pm \int_{u_{0}}^{u} d t t^{-\frac{\beta}{2}}\left(1-\frac{e^{-t}}{t^{\beta}}\right)^{-\frac{1}{2}}$,
where $u_{0} \equiv u\left(\xi_{0}\right), \lambda=k^{-\frac{1}{2}}$ an ξ_{0} is a constant. (In the following, we shall select the positive sign in front of the integral (2.4)).

First let us deal with the case $\beta \neq 2$. Using a simple trick, (2.4) reads
(2.5) $\lambda \xi=\frac{2}{2-\beta} \quad u^{\frac{2-\beta}{2}}+\int_{u}^{\infty} d t t^{-\frac{\beta}{2}}\left[1-\left(1-\frac{e^{-t}}{t^{\beta}}\right)^{-\frac{1}{2}}\right]+$ cons.

Taking account of (1.6), (2.5) can be written as
(2.6) $\lambda \xi=\frac{2}{2-\beta} u^{\frac{2-\beta}{2}}+\psi\left(\frac{2-\beta}{2}, \beta,-\frac{1}{2} ; u\right)+$ const.

At this stage it is instructive to treat some special cases of (1.7), namely:
a) Case $\beta=2$.

Equations (1.7) and (2.1) become respectively:

$$
\begin{equation*}
u_{t x}=a e^{-u}+b u, \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} v u_{\xi}^{2}=-a e^{-u}+\frac{1}{2} b u^{2}+c . \tag{2.8}
\end{equation*}
$$

From (2.8) we obtain for $c=0$:

$$
\begin{equation*}
\lambda\left(\xi-\xi_{0}\right)=\int_{u_{0}}^{u} d t t^{-1}\left(1-\frac{e^{-t}}{t^{\beta}}\right)^{-\frac{1}{2}}, \tag{2.9}
\end{equation*}
$$

where $b=2 a$ and ξ_{0} is a constant.
Following the same procedure previously used, we are led to the expression
(2.10) $\lambda \xi=\ln u+\int_{u}^{\infty} d t t^{-1}\left[1-\left(1-\frac{e^{-t}}{t^{2}}\right)\right]+$ cons.

Equation (2.10) reads also
(2.11) $\lambda \xi=\ell n u+\psi\left(0,2,-\frac{1}{2} ; u\right)+$ cons,
where $\psi\left(0,2,-\frac{1}{2} ; u\right)$ is defined by (1.6).

Remark 2.1. An explicit solution of the form (2.11) holds also for the equation

$$
\begin{equation*}
w_{t x}=p e^{-w}+q w+r, \tag{2.12}
\end{equation*}
$$

p, q and r being constants.
In fact, by carrying out the substitution $w=u-\frac{r}{q}$, (2.12) transforms into (2.7), where $a=p e^{\frac{r}{q}}$ and $b=q$.
b) Case $\beta=1$.

Equations (1.7) and (2.1) read respecitvely

$$
\begin{equation*}
u_{t x}=a e^{-u}+b \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} v u_{\xi}^{2}=-a e^{-u}+b u+c \tag{2.14}
\end{equation*}
$$

The change of variable $u=w-\frac{c}{b}$ transforms (2.14) into the equation

$$
\begin{equation*}
\frac{1}{2} v w_{\xi}^{2}=-a e^{\frac{c}{b}} e^{-w}+b w \tag{2.15}
\end{equation*}
$$

Choosing then $c=b \ln \frac{b}{a}$, from (2.15) one has
(2.16) $\quad h w_{\xi}^{2}=w-e^{-w}$,
where $h=\frac{v}{2 b}$.

Equation (2.16) provides
(2.17) $\mu\left(\xi-\xi_{0}\right)=\int_{W_{0}}^{w} d t t^{-\frac{1}{2}}\left(1-\frac{e^{-t}}{t}\right)^{-\frac{1}{2}}$,
where $\mu=h^{-\frac{1}{2}}$.
From (2.17) one gets
(2.18) $\lambda \xi=2 w^{\frac{1}{2}}+\int_{w}^{\infty} d t t^{-\frac{1}{2}}\left[1-\left(1-\frac{e^{-t}}{t}\right)\right]+$ cons,
where $w=u+\ln \frac{b}{a}$.
Finally, taking account of (1.6), (2.18) can be written as
(2.19)

$$
\lambda \xi=2 w^{\frac{1}{2}}+\psi\left(\frac{1}{2}, 1,-\frac{1}{2} ; w\right)+\text { const. }
$$

c) Case $b=0$.

In this case (1.7) specializes to Liouville's equation (1.4), whilst (2.1) becomes
(2.20) $\quad \mathrm{k} \mathrm{u}_{\xi}^{2}=-\mathrm{e}^{-\mathrm{u}}+1$,
where k is given by (2.2) and c has been chosen equal to . Equation (2.20) yields
(2.21)

$$
\lambda\left(\xi-\xi_{0}\right)=\int_{u_{0}}^{u} d t\left(1-e^{-t}\right)^{-\frac{1}{2}}
$$

The integral on the right of (2.21) can be expressed in terms of the function (1.6) as follows

$$
\begin{equation*}
\int_{u_{0}}^{u} d t\left(1-e^{-t}\right)^{-\frac{1}{2}}=u+\varphi\left(1,0,-\frac{1}{2} ; u\right)-u_{0}-\left(1,0,-\frac{1}{2} ; u_{0}\right) \tag{2.22}
\end{equation*}
$$

Using (2.22), from (2.21) we obtain

$$
\begin{equation*}
\lambda \xi=u+\psi\left(1,0,-\frac{1}{2} ; u\right)+\text { const. } \tag{2.23}
\end{equation*}
$$

The function $\psi\left(1,0-\frac{1}{2} ; u\right)$ can be explicitly determined in terms of elementary functions. In fact, since
(2.24) $\int_{u_{0}}^{u} d t\left(1-e^{-t}\right)^{-\frac{1}{2}}=-2 \ln \left[1-\left(1-e^{-u}\right)^{\frac{1}{2}}\right]-u+2 \ln \left[1-\left(1-e^{-u_{0}}\right)^{\frac{1}{2}}\right]+u_{0}$,
from (2.22) and (2.24) we obtain
(2.25) $\Psi\left(1,0,-\frac{1}{2} ; u\right)=-2 \ln \left[1-\left(1-\mathrm{e}^{-\mathrm{u}}\right)^{\frac{1}{2}}\right]-2 \mathrm{u}+$ const,
where the constant on the right is given by

$$
\begin{equation*}
2 \lim _{t \rightarrow+\infty}\left\{t+\ln \left[1-\left(1-e^{-t}\right)^{\frac{1}{2}}\right]\right\}=-2 \ln 2 \tag{2.26}
\end{equation*}
$$

Now let us go back to (2.23). In view of (2.25) we have

$$
\begin{equation*}
\operatorname{Ae}^{\lambda\left(\xi-\xi_{0}\right)}=\frac{\mathrm{e}^{-\mathrm{u}}}{\left[1-\left(1-\mathrm{e}^{-\mathrm{u}}\right)^{\frac{1}{2}}\right]^{2}} \tag{2.27}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{e^{-u_{0}}}{\left[1-\left(1-e^{-u_{o}}\right)^{\frac{1}{2}}\right]^{2}} \tag{2.28}
\end{equation*}
$$

Finally, by means of simple calculations, (2.27) allows us to obtain the following expression of u in terms of ξ :
(2.29)

$$
u=\ln \frac{\left[1+2 A e^{\lambda\left(\xi-\xi_{0}\right)}\right]^{2}}{4 A e^{\lambda\left(\xi-\xi_{0}\right)}\left[1+\mathrm{e}^{\lambda\left(\xi-\xi_{0}\right)}\right]} .
$$

3. SERIES REPRESENTATION OF $\psi(\alpha, \beta, \gamma ; x)$ IN TERMS OF INCOMPLETE GAMMA

 FUNCTIONS.Let us consider the binomial expansion
(3.1) $\left.\quad\left(1-\frac{e^{-t}}{t^{\beta}}\right)^{\gamma}=1+\frac{1}{\Gamma(-\gamma)} \sum_{n=1}^{\infty} \frac{\Gamma(n-\gamma}{n!}\right) \frac{e^{-n t}}{t^{n}!^{\beta}}$,
where the series on the right is uniformly convergent for $t \geqslant x$, x being any fixed number such that $\mathrm{e}^{-\mathrm{x}}<\mathrm{x}^{\beta}$.

We can thus write
(3.2) $\psi(\alpha, \beta, \gamma ; x)=-\frac{1}{\Gamma(-\gamma)} \sum_{n=1}^{\infty} \frac{\Gamma(n-\gamma)}{n!} \int_{x}^{\infty} d t t^{\alpha-n \beta-1} e^{-n t}$.

