rART ONE. DUALITY THEOREM FOR REGULAR FUNCTIONS,

for brevity, we omit the statements of dual propositions, but if we must refer

to them, we denote them by *.

DEFINITION 1.~ Let S be a topological space, x a point of S, G a finite directed
graph and £: S = G a funetion from S to G. We call image-envelope of x by f, and
we denote by <f(x)>, the set of vertices, such that the closures of their f-counter

of

tmages include the point, Z.e. v € <f(x)> & x € V,

PROPOSITION 1. - Let S be a topological space, X a point of S, G a finite
directed graph and f: S > G a funetion from S to G. Then the. tmage-emvelope of X
coineides with the intersection of the images of the neighbourhoods of x, 7.e.

<f(x)> = ﬁ{f(I_IM) / U 18 a netghbourhhod of x}.

Proof.~ v E<f(z)> & x €W & vy
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PROPOSITION 2. - Let S be a topological space, G a finite directed gravh and
f: S G a funetion from S to C. Then f i8 an o-regular funection, 1ff, for all

x € S, f(x) 28 a head of <f(x)>, T.e. f(x) € BH(<E(x)>).

Proof. = 1) Let f be an o-regular function, x a point of S, and v = f(x). Then,
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for all w € <f(x)>, i.e. =x € Wf, we have V" "W # é., Hence v = w, i.e. v €
H(<f(x)>).
i1) For all z € §, let f(x) € H(<f(x)>) be. We have to prove that, for all v,w €

f £
G, such that v # w and v # v, it results that 7oA Wf =é¢. If we assume x € " N

Wf, 1t follows flx) = v, v € H(<(f(x)>) and w € <F(x)>, hence v - w. Contradiction.®



PROPOSITION 3. - Let S be a topologieal space, G a finite directed graph and
f: S G a funetion from S to G. Then f 78 a c.o-regular function, i1ff, for all
X € S, 1t 1s:
1) £(x) 78 a head of <f(x)>, Z.e. f(x) € H(Zf(x)>);

11) <f(x)> s a totally headed subset of G.

Proof. = Bv Proposition 2, we have only to prove that an o-regular function

1s c.o~regular iff i1i) is true.

Then let f be a c.o-regular function. Since each subset ¥ = {vl,.. "Un} of
f F : :
<f(xz)> such that V{. N L. N an # & can not be a singularity of f, X must be

headed.

Conversely, let <f(x)> be totallv headed for all x € S. Then if we assume that

. . . . . f f
X = {ul,...,vn} 1s a singularity of f, there exists a point x € LIARTEA V;z.

Hence the non-headed subset X is included in <f(z)>. Contradiction. ®

REMARK, - Consequently, Zf G 78 an undirected graph, a function f:2 = Q s
strongly regular T.e. c.regular 1ff, for all x € S, <f(x)> 71s a totally headed
subset of G. In this case, indeed, we have that "<f(x)> totally headed" is

equivalent to H(<f(x)>) = <f(x)>.

2) Patterns of a funetiom.
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DEFINITION 2. - Let f: S = G be a funetion from a topological space S to a
fintte directed graph G. A funetion g: S = G 7s ealled an o-pattern (resp. o*~
pattern) of f, 2f, for all x € S, 7t holds g(x) € H(<(f(x)>) (resp. g(x) €

T(<E(x)>) ).

REMARK. - In general there is no pattern of a given function, because the sets

<f(x)> may be non-headed for some x € S,



DEFINITION 3. = A function f£: S > G from a topological space S to a finite
directed graph G 18 called quasi o-regular (resp. quasi o"-regular), or simply
g.o-regular (resp. q.o"-regular) <1f the image-envelope <f(x)> is headed (resp.
tatled) for all x € S,

Moreover, the function f 7s called completely quasi regular, or sitmply c.q.

regular, 7f <f(x)> 1s totally headed.

REMARK 1. - Consequently, if G is an undirected graph, a a. regular function

1s also regular and a ¢.q.regular function is also completely regular, i.e.

strongly regular.

REMARK 2. - We consider only c.g.regular functions, since by R each c.q.o-

regular funetion is also c.q.o”-regular.

PROPOSITION 4. = An o-regular funection 1is q.o-regular. A c.o-regular functiom

18 e.g.regular.

Proof., - It follows from Propositions 2, 3. ®

PROPOSITION 5. = 4 funetion f: S = G 78 q.o-regular 1ff there exists an o-—

patterm of f.

Proof. = 1) Let g be an o-pattern of f. Since, for all z € S, g(x) € H(<Ff(xz)>),
<f(x)> 1s headed.
11) Let <f(x)> be headed. In order to construct an o-pattern g of f, we number

the vertices of the finite graph G by v v_. Then, for all x € S, we choose

yaeees?
as g{x) the vertex with the lowest index among the vertices of H(<f(x)>). B

REMARK. - We note that a c.g.regular function is g.o-regular and q.o"-regular.

Hence, there exist both o-patterns and o"~-patterns for a c.q-regular function.
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PROPOSITION 6. ~ Let f: S = G be a q.o-regular function. Then:
1) all its o-patterns are o-regular functions;

11) two o-patterns of f are o~homotopie to each other.

Proof. = 1) let g: S = G be an o-pattern of f. At first, we prove that ad C
Vf, for each v € G, We have, indeed, z € VW = glz) =v = p €<Lf(x)> = x€ Vf
' AR W ey <
Hence 1t results - and also C 7. Consequently, <g(x)> C <f(x)>, for
all x € S. Now, since g(x) is a head of <f(x)>, it is also a head of <g(z)>. Then,
by Proposition 2, g is an o-regular function.
11) Let g,h be two o-patterns of f. The function F: SxI = G, given by:
| glx) for t=0
Flx,t) = -
hix) ¥t € 10,1},

1s @ homotopy between g and #. Besides, for all (x,t) € SxI, it is:

[ <g(z)>U <h(x)>C <f(x)> for t = 0,
<Flx,t)> = 4

- <h(x)> ¥+ € [0,1].
Then, since g(x) and A(x) are heads of <f(x)>, they are also, respectively, a head

of <g(x)> VU <h(x)> and a head of <h(x)>. Consequently, F is an o-regular function.

DEFINITION 4. - Let S be a topologieal space and G a finite directed graph. Two
c.o-regular (resp. c.o -regular) functions f,g: S = G are called completely o~homo-
topic (resp. completely o"-homotopic) or simply c.o~homotopic (resp. c.o*-homotopic)
if there exists a homotopy F between f and g, which s a c.o-reqular (resp. c.o0*—
regular) function. F is ealled a complete o-homotopy (resp. complete o*-homotopy),

or simply a c.o~homotopy (resp. c.o*-homotopy).

PROPOSITION 7., - Let £f: S » G be a e.q.regular function. Then:
t) all tts o-patterms are c.o-regular functions:

t1) any two o-patterms of f are c.o~homotopic to each other.

Proof. = 1) Like in Proposition 6, we prove that <g(x)> C <f(x)>, for all x € S,

Consequently, since <f(xz)> is totally headed, also <g(x)> is totallv headed.



Hence, by 1) of Proposition 6 and by Proposition 3, g is c.o-regular.

ii) We define the homotopy like in Proposition 6. Since, ¥ x € S, f(x) is
totally headed, the subsets <g(x)> U <h(x)> and <h(x)> are also totally headed.
Hence, ¥ (x,t) € SxI, F(x,t) is totally headed and so is a c.o-homotopy between

g and h, by Proposition 3. W

3) Duality Theorem for complete homotopy classes.
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We see it is possible to construct homotooy classes, by considering only c.

regular functions and c.regular homotopies.

PROPOSITION 8. = The c.o-homotopy 18 an equivalence relation in the set of

e.o-regular funcetions from S to G.

Proof. = The relation obviously satisfies the reflexive and symmetric proper-
ties. (See [ 2], Remark to Definition 5). Also the transitive oroperty is true.
In fact, let F (resp. J) be a c. o~homotopy between the c. o-regular functions f

and g (resp. g and k). Then the function K: SxI = G, given by:

( F(z, 3t) ¥re€Ss, ¥ tGIO,%
K(z,t) = { g(z) Ve €S, ¥tE€ {%,%]
2
| I (x, 3t=2) Yr€s5, ¥teElgl ,

1s an o-homotopy between f and k.

We have to prove that k is a c.o-regular function. Let us assume that the image-
envelope of the point (x,t) 1s non-totallv headed. Then, if ¢t < %‘-, also the image-
envelope of (x,3t) is non-totally headed for the function F. If ¢t 2 z, also the

3
image-envelope of (z,3%t~2) 1s non-totally headed for the function J. If L. t < 2

3 3
also the image-envelope of the point x is non~totally headed for the function g.
Anyhow, we obtain a non-totally headed image-envelope for a c.o-regular function.

This contradicts to Proposition 3. @
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REMARK. - By considering as homotopy between f and g that given by the sum (see

[ 21 , Remark to Defintion 5), we obtain only an o-regular function, in general.

DEFINITION 5. = Let S be a topological space and G a finite directed graph. We de

note by QC(S,G) (resp. Q;(S,G)) the set of c.o-homotopy (resp. c.o' -homotopy) classes.

REMARK. - We note that Q;(s, G) coincides with Qc(s,a'), and Q; (S,G") with Q, (3,G).

THEOREM 8. - Let S be a topological space and G a finite directed graph. Then

there exists a natural bijection from the get of complete o-homotovv classes Qc( S,G)

to the one of complete 0'—hc}motopy classes Q;(S,G).

Proof. = We denote by FC(S_,G) (resp. F;(S, G)) the set of all the c.o-regular
(resp. c.o0 -regular) functions. We define a relation ¢: F (5,G) = F';(S, G) which
sends each f € Fc (S,G) in any its o' -pattern ¢(f) and similarlv a relation y: F';( S,G)

- FG(S,G) which sends each % € F;(S, G) 1n any its o-pattern y(h).

i) ¢ induces a function ¢ from @ (5,6) to Q;(S, G).
By the Remark to Proposition 5 and by 1) of Proposition 7 the relation ¢ 1s defined
on all the set Fc( S,G) and by ii) of Proposition 7 every o' -pattern of f is o'-hon@_
topic to 4(f). Then we define a function ¢: F;(S_, G) -~ QC(S_. G) by putting:

VFEF (56, &f) = 16(f)}.
Now let g be a function c.o-homotopic to f by the homotopy H, and let ¢(g) be an

o'-pattern of g. We construct the c.o-homotony:

[ f(x) OQtQ%:

o 1 2
Flx,t) = 4 H(x,3t-1) 5 St s L
| g(x) %‘ﬂ t s 1.

let F be an o -pattern of F, it follows from Provosition 7' that 7 is a c.o"-homotopy

=

between the restrictions f = F/Sx{O} and g = F/Sx{]}' Since f = F/Sx{O} and H does
not interfere in the construction of f‘_, ;‘ is an o"-mattern of f. Similarly, 9: is an o -
pattern of g. Then by Proposition 7., ¢(f) and f’ are r:.o*-hcam‘mpic, and the same

happens for $(f) and 5 For the relation is transitive, ¢(f) is c.o -homotopic to é(g).
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Since the function ¢ is compatible with the c.o-homotopv relation in Fa(S,G)y ¢
induces a function ® from Q,(5,G) to Q;(S,G) given by:

¥ a € QG(S,G), o(a) = {¢(f)}, where f is a representative of a.

i1) v induces a function ¥ from @ (5,G) to @ (S,G).
By dual arguments we can prove that the required function Y is individualized by
putting:

¥ B E Q;('S,G), v(g) = {v(h)}, where » is a reoresentative of B.

111) ¢ and ¥ are bijective functions.

We have only to prove that ¥¢ 1s the identity in Qc (S,G) and ¥ the one 1n Q; (S,G).
Let o be a class of Q (S,G) and f € a a c.o-regular function. We have &(a) = {4(f)},
and, successively, ¥d(a) = {¢6(f)}. We observe that the function vé¢(f) is c.o-
regular by Propositions 7, 7°. Followw' ng 1) of the proof of Proposition 6, it

wa{b(f': C Tf¢( )

results, ¥ v € G, Tf , then like 1i) of the same bproof, we can
construct a c.o~-homotooy between f and ué(f). Conseaquentlv, ¥&(a) = {vé(Ff)} = {Ff} =

a. Similarly, it results, ¥ 8 € Q;(S_,G), dY(R) = R, B

4) Duality theorem for homotopy classes.
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By the two Normalization Theorems Ry s Pe’ the duality can be extended to the

homotopy classes Q(S,G) and Q°(S,G).

PROPOSTITION 10. - Let SxI be a normal topological space and G a finite directed
graph. Then there exists a natural bijection from the set of c.o-homotopy classes

QC(S,G) to the one of o-homotopy classes 0(S,GR).

Proof. - let F(S,G) and Fﬂ( S,G) be the sets of o-regular and c.o-regular func-
tions from S to G and 7: Fc( S,G) = F(5,G) the identical embedding. Obviously, 7
1s compatible with the c.o-homotoov relation in F’G (S,G) and with the o-homotopy
relation in F(S,G), hence j induces a function J from Q,(8,G) to Q(5,G). Moreover,

J 1s onto by R, and it is one to cne bv F ., ®

'
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Firallv, by Propositions 10, 10* and Theorem 9 we obtain:

THEOREM 11. -~ Let S be a countably paracormact normal space and G a finite
directed gravh. Then there exists a natural hiiection from the set of o—homotony

classes O(S,R) to the ome of o -homotopv classes 0*(S,G).

Proof. In fact the assummtion on S is equivalent to suppose that ¢ and SxJ are

normal spaces. (See Tntroduction). B

REMARK 1. - In general the previous result does not hold for anv tomological

space. (See Example 13.5).

REMARK 2, - In the foregoing conditions it follows that the sets Q(S,G), Q(S,G"),

Q' (5,G), 9°(S,43") can be identified.

PART TWO, DUALITY THEOREM FOR REGULAR FUNCTIONS RETWEEN PATPS,

5) Balanced funetions.
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Yle can characterize the regular functions hetween pairs, similarlv to Propo-

sitions 2, 3, bv the following:

PROPOSITION 12, - Let f: S,S' = C,G' be a funetion from a nair of tovological
spaces S,S' to a patr of finite directed oranhe C,G'" and f': €' > Q' the restric-
tion of £: S > C to S'. Then f 18 an o~regular function, 1ff f(x) 78 a head of
<E(x)> 7n G, for all x € S; while f'(x) 7s a head of <f'(x)> in ', for gll x € <,
Moreover, T 1s e, o-regular, 1ff also the subsets <f(x)> are totally headed Tn G
and all the subsets <f'(x)> are totallu headed in (', W

REMARV., - Consequently, ©f G 7s an undirected gravk, a function f: S,°' - Q'

b



