4 SPECIAL FRAMES.

A classification of the most important types of frames can be performed taking into account the vanishing of quantities occurring, in $D\bar{P}$. So we get a chain of four types, characterized by a more and more rich structure of the fosition space P.

Affine frames.

1 DEFINITION

The frame P is AFFINE if

$$\dot{D}^2 \bar{P} = 0 .$$

2 We have interesting characterizations of affine frames.

PROPOSITION.

The following conditions are equivalent.

- a) P is affine.
- b) Ď P depends only on time, i.e. Ď P is factorizable as follows

- c) We have
- d) P depends only on time, i.e. P is factorizable as follows

$$T \times E$$
 \dot{P}
 $\downarrow id_{T}xt$
 $\ddot{S}^{*} \otimes \ddot{S}$
 $T \times T$

e) Let $\sigma \in T$; then , $\forall \tau \in T$, the map

$$P_{(\tau,\sigma)}$$
: $S_{\sigma} \rightarrow S_{\tau}$

is affine, i.e.

$$\tilde{P}_{e'}(\tau) = \tilde{P}_{e}(\tau) + \tilde{P}_{(\tau,\sigma)} \quad (e' - e)$$
.

f) $\forall \tau \in \mathbb{T}$, the map

is affine, i.e.

$$\bar{P}(e') = \bar{P}(e) + \frac{1}{2} \epsilon_{p}(\tau)(e'-e) + \Omega_{p}(\tau) \times (e'-e) .$$

PROOF.

It sufficies to prove f) ==> e), the other implications being immediate. f) ==> e).

Let
$$D_1 \tilde{P}(\tau, e') = D_1 \tilde{P}(\tau, e) + \tilde{D}_2 D_1 \tilde{P}(\tau) (e'-e),$$

with $t(e) \equiv \sigma \equiv t(e')$.

Then, by integration, we get

$$P(\tau,e') = P(\tau,e) + A(\tau)(e'-e)+B(\tau,e-e')$$

where

$$A(\tau) : \bar{\$} \rightarrow \bar{\$}$$

is a linear map.

Moreover, for (II,1.10 a) and (II.1.10 b) also B is linear with respect to (e-e').

Then
$$\tilde{P}(\tau,e') = \tilde{P}(\tau,e) + \overset{\sim}{D_2}\tilde{P}(\tau)(e'-e)$$
.

Here by abuse of notation we have written

$$\overset{\bullet}{\mathsf{D}}\,\bar{\mathsf{P}}:\,\mathbb{T}\to\bar{\mathsf{S}}^*\otimes\bar{\mathsf{S}}\;\;;\,\overset{\bullet}{\mathsf{P}}:\,\mathbb{T}\times\mathbb{T}\to\bar{\mathsf{S}}^*\otimes\mathsf{S}\;\;,\;\ldots$$

as \tilde{D} \bar{P} , \tilde{P} , ... depend only on time.

Hence the motion of an affine frame \mathcal{P} is characterized by the motion of one of its particles

$$P_{q}: T \to E$$
 and by $\epsilon_{p}: T \to \overline{S}^{*} \otimes \overline{S}, \overline{\Omega}: T \to \overline{S}$.

3 Let P be affine. since \dot{P} depends only on time, we can get a reduction of the representation of TIP by $\dot{T}E_{/P}$, writing

$$(\mathbf{E} \times \mathbf{\bar{S}})_{/P} \stackrel{\sim}{=} (\mathbf{P} \times \mathbf{T} \times \mathbf{\bar{S}})_{/P} = \mathbf{P} \times (\mathbf{T} \times \mathbf{\bar{S}})_{/P}$$
.

THEOREM.

a) Let P be the quotient space

$$\vec{P} \equiv (T \times \vec{S})_{/P}$$
,
 $[\tau,u] = [\tau',u'] \iff u' = P'_{(\tau',\tau)}(u)$.

given by

Then IP results into a vector space, putting

$$\lambda \left[\tau, \mathbf{u}\right] \equiv \left[\tau, \lambda \mathbf{u}\right]$$

$$\left[\tau, \mathbf{u}\right] + \left[\tau', \mathbf{u}'\right] \equiv \left[\tau, \mathbf{u} + \dot{P}_{(\tau, \tau')}(\mathbf{u})\right]$$

For each $\tau \in T$, the map

is an isomorphism.

b) Let σ_p be the map

$$\sigma_{\mathbb{P}} : \mathbb{P} \times \mathbb{P} \to \mathbb{P},$$

given by
$$(q, [\tau, u]) \mapsto p(P(\tau, q) + u)$$
.

Then the triple (P,\bar{P},σ_p) is a three dimensional affine space.

c) For each $\tau \in \mathbb{T}$, the maps

$$p_{\tau}: S_{\tau} \to P$$
 and $P_{\tau}: P \to S_{\tau}$

are affine isomorphisms.

d) We get the splittings $TP = P \times P$ and $T^2P = P \times \overline{P} \times \overline{P} \times \overline{P}$, writing

$$[e,u] = (p(e),[t(e),u])$$
 and $[e,u,v,w] = (p(e),[t(e)u],[t(e),v][t(e)w)])$

 $\Gamma_{\!p}$ results to be time independent and it is the affine connection of $I\!\!P$

$$\Gamma_{p}$$
: $S T^{2}P \rightarrow v T^{2}P$

$$(q,[\tau,u],[\tau,u],[\tau,w]) \mapsto (q,[\tau,u],0,[\tau,w])$$
.

PROOF.

It follows from the fact that, $\forall \tau', \tau \in T$, the map

$$\tilde{P}_{(\tau',\tau)}: S_{\tau} \rightarrow S_{\tau'}$$

is affine and from the properties

$$\widetilde{P}_{(\tau'',\tau')} \circ \overset{\circ}{P}_{(\tau',\tau)} = \overset{\circ}{P}_{(\tau'',\tau)} , \overset{\circ}{P}_{(\tau,\tau)} = id_{S_{\tau}}$$

4 We get simplified formulas for Tp, T^2 p, TP, T^2 P and r_p .

COROLLARY.

We have

a)
$$T p(e,u) = (p(e), [t(e), \hat{P}(e)(u)]).$$

b)
$$T P(\tau,\lambda;q,[\tau',u]) = (P(\tau,q),\lambda \bar{P}(P(\tau,q)+P_{(\tau,\tau')}(u))$$

c)
$$\Gamma_{p}(\tau;q,[\tau,u],[\tau,v],[\tau,w]) =$$

$$= (q, [\tau, u], 0, [\tau, w + \epsilon_p(\tau) (u) + 2\Omega_p(\tau) \times u + \bar{P}(P(\tau, q))]).$$

Rigid frames.

5 DEFINITION.

The frame P is RIGID if it is affine and

$$\epsilon_{p} = 0$$
 .

6 We have interesting characterizations of rigid frames.

PROPOSITION.

The following conditions are equivalent.

- a) P is rigid.
- b) Let $\sigma \in T$; then, $\forall \tau \in T$, the map

$$\stackrel{\sim}{\mathsf{P}}_{(\tau,\varsigma)}: \mathbb{S} \to \mathbb{S}_{\tau}$$

preserves the distances, i.e.

$$||P_{(\tau,\sigma)}(e) - P_{(\tau,\sigma)}(e')|| = ||e-e'||$$

c) $\forall \sigma \in \mathbb{T}$, the map

is affine and

$$\bar{P}(e') = \bar{P}(e) + \Omega_{p}(\sigma) \times (e'-e)$$
.

d) We have $\overset{\circ}{P} = 0$ and $\overset{\circ}{P} : T \times E \rightarrow S U(\$)$.

PROOF.

- a) < = >c) trivial.
- a) \Longrightarrow b) ϵ_p is the Lie derivative of g with respect \tilde{P} , i.e. the derivative with respect to time of the deformations tensor $g \circ (\tilde{P}, \tilde{P}) g$. Then $\epsilon_p = 0$, by integration with respect to time, gives the result.
- b) ==>d) It is known (the proop is a purely algebric computation, making use of an orthogonal basis) that if A is an affine euclidean space and $f: A \to A$ is a map which preserves the norm, then f is an affine map with unitary derivative. Then we see that $P(\tau,\sigma)$ is affine adn $\widehat{DP}_{(\tau,\sigma)} \in U(\$)$.

d) =>a)
$$\dot{P}_{(\tau',\tau)} \in U(\$)$$
 gives
$$\dot{P}_{(\tau,\tau')} = \dot{P}^{t}_{(\tau',\tau)}$$

hence, deriving respect to τ '

$$\dot{P}_{(\tau',\tau)} \circ \dot{P}_{(\tau',\tau)}^{t} = id_{\bar{s}}$$

we get

$$D_1 \overset{\bullet}{P}(\tau',\tau) \circ \overset{\bullet}{P}^{t}(\tau',\tau) + \overset{\bullet}{P}(\tau',\tau) \circ D_1 \overset{\bullet}{P}^{t}(\tau',\tau) = 0$$

and, for $\tau' \equiv \tau$,

$$\epsilon_{\mathbf{P}}^{(\tau)} = S D_{\mathbf{I}} \dot{\mathbf{P}}_{(\tau,\tau)} = D_{\mathbf{I}} \dot{\mathbf{P}}_{(\tau,\tau)} + D_{\mathbf{I}} \dot{\mathbf{P}}_{(\tau,\tau)}^{\mathbf{t}} = 0$$
 .

Hence the motion of a rigid frame \mathcal{P} is characterized by the motion of one of its particles $\mathcal{P}_q: T \to \mathbb{E}$ and by $\Omega_{\mathcal{P}}: T \to \overline{\mathbb{S}}$.

7 Let P be rigid.

THEOREM.

P results into an affine euclidean space. In fact g_p results to be time independent and we can define the map

$$g_p: \bar{P} \to R$$
 which is given by
$$\left[\tau, u\right] \mapsto \frac{1}{2} \ u^2 \ .$$

The affine connection $\stackrel{'}{\Gamma}_{\!p}$ results into the Riemannian connection of P $_{\underline{\cdot}}$

Translating frames.

8 DEFINITION

A frame P is TRANSLATING if it is rigid and

$$\Omega_{\mathbf{P}} = 0$$

9 We have interesting characterizations of translating frames .

PROPOSITION.

The following conditions are equivalent.

- a) P is translating
- b) Let $\sigma \in T$; then $\forall \tau \in T$, the map,

$$P_{(\tau,\sigma)}^{\circ}: S_{\tau} \rightarrow S_{\tau}$$

is affine, with derivative $DP_{(\tau,\sigma)} = id_{\bar{s}}$, i.e.

$$P_{e}(\tau) = P_{e}(\tau) + (e'-e)$$
.

c) $\forall \tau \in \mathbb{T}$, the map

is constant, i.e. $\bar{P}(e') = \bar{P}(e)$

Hence the motion of a translating frame is characterized by the motion of one of its particles $P_{\alpha}: T \rightarrow E$.

We will write $\bar{P}: T \to U$, $\bar{\bar{P}} = D\bar{P}: T \to \bar{S}$. $\hat{P} = d_{\bar{E}} - t \otimes \bar{P}: T \to \bar{E}^* \otimes \bar{S}$. 10 Let \bar{P} be translating. Since $\bar{P} = id_{\bar{S}}$, we can get a further reduction of the representation of $T\bar{P}$ by $T\bar{E}_{/P}$, writing

$$(\mathbf{E} \times \mathbf{\bar{\$}})_{/\mathbf{P}} \stackrel{\sim}{=} (\mathbf{P} \times \mathbf{T} \times \mathbf{\bar{\$}})_{/\mathbf{p}} = \mathbf{P} \times \mathbf{\bar{\$}} .$$

THEOREM.

Let P be translating.

a) The map

$$\bar{P} \rightarrow \bar{S}$$
, $[\tau, u] \rightarrow u$,

given by

is well defined and it is an isomorfism.

Then the map

$$\sigma_{P}: \mathbb{P} \times \mathbb{S} \to \mathbb{P},$$

$$(q,u) \to p(P(\tau,q)+u),$$

given by

does not depend on the choice of $\tau \epsilon T$.

- b) The triple (P,S, ϵ_p) is an affine euclidean space,
- We get simplified formulas for Tp, T^2p , Tp, T^2p .

PROPOSITION

Let P translating

a) T p(e,u) = (p(e),u-u°
$$\bar{P}(t(e))$$
)
$$T^{2}p(e,u,v,w) = (p(e),u-u° \bar{P}(t(e)) v-v° \bar{P}(t(e)),w-w° \bar{P}(t(e)) + \bar{P}(t(e))).$$

b)
$$TP(\tau,\lambda;q,u) = (P(\tau,q),\lambda\bar{P}(\tau) + u$$
,
$$T^2P(\tau,\lambda,\mu,\nu;q,u,v,w) = (P(\tau,q),\lambda\bar{P}(\tau) + \mu,\mu\bar{P}(\tau) + \nu,\lambda\bar{P}(\tau) + \nu\bar{P}(\tau) + w)$$

c)
$$\Gamma_{p}(\tau;q,u,u,w) = (q,u,0,w + \bar{P}(\tau))$$
.

Inertial frames.

12 DEFINITION.

A frame P is inertial if it is translating and

$$\bar{\bar{P}} = 0$$
.

13 PROPOSITION.

The following conditions are equivalent.

- a) P is inertial,
- b) P is translating and $D\bar{P} = 0$.
- c) $\stackrel{\sim}{P}$ is are affine map, i.e. (taking into account the properties (II.1.10). $\stackrel{\sim}{P}(\tau,e) = e + \bar{P}(\tau-t(e))$, with $\bar{P} \in U$.
- d) \overline{P} : $\mathbb{E} \to U$ is a constant map.

Hence an inertial frame is characterized by its constant velocity.

14 PROPOSITION.

We have

a) T p(e,u) = (p(e),u-u°
$$\bar{P}$$
)

T²p(e,u,v,w) = (p(e),u-u° \bar{P} ,v-v° \bar{P} , w-w° \bar{P})

b) T
$$P(\tau,\lambda;q,u) = (P(\tau,q),\lambda\bar{P}+u)$$

 $T^2P(\tau,\lambda,\mu,v;q,u,v,w) = (P(\tau,q),\lambda\bar{P}+u,\mu\bar{P}+v,\nu\bar{P}+w)$

c) $\dot{\Gamma}_{\rm D}$ results time independent and we get

Physical description.

A frame P is affine if it preserves during the motion the spatial parallelogram rule; it is rigid if moreover it preserves spatial leghts (hence also angles); it is translating if moreover it preserves spatial directions; it is inertial if its world-lines are parallel straight-lines. We can describe the four cases by a picture.

