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3 FRAMES AND THE REPRESENTATION OF T2E :

In this section we are dealing with the second order derivatives of

the frame and tangent spaces.

Frame acceleration, second jacobians, strain and soin .

] The acceleration of the frame is the vector field on & constituted
by the accelerations of the world-lines of the frame. Hence 1t is the se-
cond derivative of the motion with respect to time. On the other hand,the
second and mMixed jacobians are the second derivatives with respect to

event - event and time~ event. We consider only free entities.

DEF INITION.

For simplicity of notations, leaving to the reader towrite them 1in the

complete from .

a) The (FREE) ACCELERATION-FUNDAMENTAL FORM - of P is the map

o -
D]P : T x B > K

The (FREE) ACCELERATION-EULERIAN FORM - of P 1is the map

7 -

5 = D1 Pogjg:E ~»FL

b) The (FREE) SECOND JACOBIAN-FUNDAMENTAL-EULERIAN FORM - of - 1s the map

'ﬁlu — e —
ngp T XxE - @I @ I

The (FREE) SECOND JACOBIAN-EULERIAN-EULERIAN FORM - of P is the map

AV - - -
- DS Poj:E -~ L @ B @ [

o

The (FREE) SPATIAL SECOND JACOBIAN-FUNDAMENTAL-EULERIAN FORM - of +® 1s the map

v 27U - -
- DgP . T xE > 3 @3 @3

O <<

The (FREE) SPATIAL SECOND JACOBIAN-LAGRANGIAN - LAGRANGIAN FORM WITH RESPECT
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TO THE INITIAL TIME 1 e T AND THE FINAL TIME ' e T - of P 1is the map

hd
*

2 —% =k =
P, D P, | 3y -3 2% @3
(T !T) (T :T) it

1

c) The (FREE) MIXED SECOND JACOBIAN-FUNDAMENTAL-EULERIAN FORM of P

1S the map

y . -
D2D1P I xE - & @E

The (FREE) MIXED SECOND JACOBIAN-EULERIAN-EULERIAN FORM of P 1is the map

ey

i, 3 - -
P = DzD]P oJ:t - F @ K&

The (FREE) MIXED SPATIAL SECOND JACOBIAN-EULERIAN-EULERIAN FORM - of #

is the map
v

: - %
D2D1P 0oJ:t-+-3 @t

Rl
1

d) The (FREE) STRAIN-EULERIAN FORM - of P is the map

The (FREE) SPIN - EULERIAN FORM - of P is the map

oP:f -5 @9

() =

A E g L
P2

The (FREE) ANGULAR VELOCITY-EULERIAN FORM - of P s the map

E > S

I

v A
“"}:.*..__
5 O

a:D—

2 We get immediate important properties of these maps.
PROPOSITION.

We have

a) tobD



hence we can write

20, - " - ¥ - - 4 -
DTP ¢ T X E - § Dg P T xE -~ E @[ x8 DZD]P:TxEﬁE* ® 3
P - 3§ P E-E QF @3 . f - I @3

v
P:E -3 @3
Moreover all the previous maps are expressible by 5,5}DP and P
2“‘1; — v
d) D]P =P oP
- — v _ ~ v
e ) P =-P@te®t-(DPoP@t-ta (DPoP)
f) P = DPo
g) p = DP (P)
d v o
h) P = DP
Y
2 v -
P = P p
1) (DZ )T'|$T (1',1) 0 \$*
v Vo o-
1) (D] P)oj=DP
If uz=u®pP+ uP . [ - [ , we can write
m) D P(u) = u® P AL (0L) + o xu
(U = U 2:.,P P r._? U.P.
n) We have qu Lﬁ g
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. |( 3
P=r. Dx1 @ SX
10 K
2 k 5 . k 1 o 5 i
P=-T Dx°@Dx® -7, (Dx & Dx° + Dx° @ Dx ) ® SX
00 10 k
e_= T. T o4p ) Dx1 @ DY = : Jd. Dx' @ Dx"
—F J,0 0] 071
] i j
w_ =+ (r, . =-T. .) Dx @ Dx
-1 2 j,o0i 1,0]
] / i k1
2= 5 det(g v) € Fj,oi 6xk
PROOF.

a),b) and c¢) follow from (II,1,10 a) by double derivation with respect
to t,7; e.e. and T,e.

d) follows from (II,1,10 ¢) by doublederivation with respect to =+ and

taking o = 1 .

e) follows from (II,1,10 b) by dcuble derivation with respect to e.

f) follows from (II,1,10 ¢) by doublederivation with respect to t and
with respect to t and e and taking o = .
g) follows from (11,2,2¢c) by derivation with respect to e.

h) follows from f).

1) follows from (II,1,10 c) by double derivation with respect to e and

taking 1t = t(e), o = 7.
AV av
1) follows from DZD1 P = DlDZP'
m) follows from g and f)
n) follows from (Lﬁ g)ij = aogij = Fj,oi + Fi,oj .

Representation of T2P and 'vTZP.

3 In order to get the space TZP handy, 1t 1s useful to regard it as a

quotient. In this way we could view TZP as a quotient space TzEFP. But a
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. 2 . _— .
reduced representation by means of T EFP is more simple for the equiva

lence classes have a unique representative for each time teT.

PROPOSITION.

Let v € T%P. Then

(=% (V) = (T P) (D) - T (a)

o0

is a C submanifold.

Then we get a partition of TZE, given by
2
TE=_|(, >
veTZp
and the quotient space TZE/P, which has a natural C  structure and

whose equivalence classes are characterized by

I
v
i

e u,vow] = [e',u' v W' ] sy P(€)=p(e'), P(t(e'),e)(u)

P(t(e').e)(v) = v', P(t(e'),e)(u,v) + P(t(e')e)(w) = w' (b)

We get a natural C diffeomorphism between T2P and T E/P given

by the unique maps

v 2
T%P > T'Eﬁp and 1-E/P -~ T%P

which make commutative the following diagrams, respectively,

2
T x TP 2 T°F g b TP
T4 i l \\\y. cw//ﬂ
¢ . T4 Tk
2 p /P /P
PROOF .

Analogous to (II,2,3)
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4 Choicing a time <teT and taking, for each equivalence class, its repre

sentative at the time 1, we get a second interesting representation of

9P,

PROPOSITION.
The maps T2PT and sz* are inverse C diffeomorphisms

nlu - - - - e e
T2PT : T2P > T2$ =% xI x93 x93, sz : T2$ = $Tx$x$x$ - T2P

T T T 1

5 The relation among the different representations of T%P 1S Shown

by the following commutative diagram

Tép < > TR
Y /P
v 2V
T Pi/ TP A
<7
%% gy TE
T T

6 The previous representations of TZP reduce to analogous represen-

tations of v TZP.

COROLLARY.

The quotient space (szE)/P is a C submanifold of TZEﬁP and

its equivalence classes are characterized by

e u,0,wW]= [e',u',0,Wl«—, p(e) = p(e'), P(t(e'),e)(u) = u',

P(t(e')e)(w) = w'.

The diffeomorphism T2P > T2E induces a diffeomorphism

/,P

VT%P e (VTZE)ﬁP

and the diffeomorphism T2E - T%P induces the inverse diffeomorphism

/P

(VTZE) > vT%P :

/P
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Moreover, the following diagrams are commutative

o | T o

uTZP » T P P - TP

-LL43 ji:p

i
—
]

/ Taking into account the identification TP

following expression of sz and TZP.
PROPOSITION.

a) Tép(e,u,vaw) = [e,P(e)(u), P(e)(v), P(e)(u,v) + Ple)(w)

o o

b) TEP(t,hum,v; e,u,v,W]) =
= (P(t,e), AP(P(t,e)) + P(r,e)(u), :P(P*(1,e)) + P(r.e)(v) ,

PROOF .

Analogous to (II,2,6)

Frame connection and Cariolis map.

8 For each +t€T, we can view IP as an affine space ,depending on
taking into account the isomorphism T x TP -+ TL. Hence we get a "time

depending"” affine connection on P

v 7
FP - T xs T P - vTZ!P.

THEOREM.

There 1s a unique map

"3
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?;P:stTsz L ouTe P

such that the following diagram is commutative

S T2 t 3 - uTZ £
Z
(t,Tp) + w : sz
P
TXST%P o uTZ@

Such a map 1s given by the following commutative diagram

S fz £ 3 = ufz i
1-..
2 - >
T
(TP)g o6 1 p
P
T x s T2 P - uTziP

Namely we get

o

v -

*P(Til_e}uiuawj) = ::P(T,e),&(T,E)(U); O,TP(T,E)(U,UH-P(T,E)(W)FE,

™

nence,if t(e) = 1

T‘P(T,[e,u,u,w;}) = [@,U,0,W,

PROOF .

(t,sz) S T2E > T x s T%P and (sz)(o,o,o): T x s T2P - S ?ZE
are inverse C diffeomorphisms.

S Then we can introduce the "following map”, that will be used (III,])
to define the covariant derivative of maps T »TP, hence the accelera

tion of observed motion .

DEFINITION.

The FRAME TIME DEPENDING AFFINE CONNECTION 1s the map



f‘P.TXSTZP > uTz'P:
given by (v, [eusu,w]) ~[P(,e),P(t,e)(u):0,P(x,e)(u,u )+P(=.e)(w)
10 The time depending affine connection T©_ does not sufficies for

P
Kinematics., Coriolis theorem, (III,1) which makes a comparison between

the acceleration of an observed motion and the observed acceleration of

! 2 2

a motion requires a further map ., . ¥ x s TP~ v T P,which is obtei

ned taking into account the isomorphism T x TP - TE .
THEOREM.

There 1s a unique map

o 2 i
'p Txs TP TP

such that the following diagram is commutative

TZE —— ) Tzﬁ

|
T xs T2P L xJTZP

Such a map is given by the following commutative diagram

TZE r . 2&
2 ! 2
T
( ?)(1,1,0) I | 'p
"D )
Fxstp — vI'P

1
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Fp(T,[e,u,UaW]) = |e,u,0,w + 2 ﬁ(e)(u) ¥ E(E)J
Thus we have
. ) v ’ ot
5 Tp + CP + DP .
where
CP I xTP~-TP and DP . T xP - TP are given dy
\ AR
Co(t,[e,u]) = [P(r,e) , 2P(P(x,e))(u)]
o — W -
QP(T,E) = [ P(t,e) , P (P(T,E))i
hence
v ‘ 2 2
CP . T xS T2P > ‘JTZP and DP : T xs TP -yl p

are given by

NENCRINTRY D =[P (,e),P(1,e) (u),0, 2 P(P(r,e))(P(r,e)(u)) ]

o
o+

DP(T,[e,u,u,w}) E[E(r,e),ﬁ(r,e)(u),O, 5(P(T,e)} -

PROOF .

; ! 2 2 2
(t,sz) : T2E - T X ST%P and (T P) : T x sTP - TE

(& &

are inverse C diffeomorphisms.

11 Then we can give the following definition

DEFINITION.

The FRAME CORIOLIS MAP is the map

CP T x 1P - TP

given by (x,lesu],» [P(t.e), 2 P(P(r,e))(u)]

|
|
-

The FRAME DRAGGING MAP 1s the map
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QP T xP TP

given by (t,(e]) ~ [F(T,E),'P(P(T,e))]

Physical description.

P is the field of acceleration of the field continuum. Qp is the
rate of change, during time, of the spatial metric; D describes the
rate of change, during time, of the spatial directions. This facts are

implicitly proved in the next section.

It is not easy to describe by picture the fundamental ,but not straight

forward ,results of this section.



