$\mu(\mathbf{E}) = \begin{cases} 1 & \text{if } \mathbf{E} \in \mathcal{U} \\ 0 & \text{if } \mathbf{E} \notin \mathcal{U} \end{cases}$

- 4 -

is an atomic mass on ${\mathcal O}$.

Proof: cfr., e.g. , [6] , p. 358.

<u>Remark</u> : According to our assumption 1), in this paper "ultrafilter", always means <u>free</u> ultrafilter, i.e. $\bigcap E = \emptyset$ (while a fixed, or <u>principal</u>, $E \in \mathcal{U}$

ultrafilter is one whose elements are the subsets of $\,\Omega\,$ containing a given point $\,x\varepsilon\Omega)$.

<u>Definition 5</u> - A two-valued (0 and $\mu(\Omega)$) atomic mass on α is called <u>ultrafilter mass</u>.

2. A theorem by B. de Finetti.

Given any $p \in \mathcal{D}$, choose $E^{(p)} \in p$ such that

for every $E_k \in p$ (k=1,2,...,n), and put

(3)
$$\alpha_1 = \inf \mu(E^{(p)})$$
.

Clearly, μ is continuous if and only if $\alpha_1 = 0$.

- 5 -

For the sake of completeness, we recall here a decomposition theorem, essentially given by B. de Finetti in [3]; for a different proof, see also [13]. The one given here is a direct proof avoiding the use of the "coefficient of divisibility" introduced in [3] .

 $\mathcal{A} \in \mathcal{C}(\Omega)$. Then Theorem 1 - Let μ be a mass on a σ -algebra

(4)
$$\mu = n \sum_{n=1}^{\infty} \beta_n + \mu_0$$

where each β_n (if not null) is atomic and μ_n is continuous (or null).

Proof - If μ is continuous, there in nothing to prove, since (4) is true with $\mu_0 = \mu$ and with each β_n null. Let now μ be non-continuous: then $\alpha_1 > 0$ and so, by (3), for every partition p $\in \mathscr{P}$ the set $E^{(p)}$ is such that $\mu(E^{(p)}) \ge \alpha_1$, and there is a partition $p \in \mathcal{D}$ such that $\mu(E^{(p_0)}) < 2\alpha_1$.

Let $\mathscr{E} = \{\mathsf{Eep} : \mu(\mathsf{E}) > \alpha_1\}$: there exists (again by (3), and remembering (1)) a set $E_0 \in \mathcal{E}$ such that $\mu(A) \ge \alpha_1$ for at least a proper subset A c $E_{\rm o}$. It follows then easily that

$$\mathcal{U}_{1} = \{ \mathbf{E} \in \mathcal{Q} : \mu(\mathbf{E} \cap \mathbf{E}_{0}) \geq \alpha_{1} \}$$

is an ${oldsymbol{lpha}}$ -ultrafilter over ${\scriptscriptstyle\Omega}$ (the only thing which may not be completely trivial is that A,B $\in U_1$ implies A \cap Be U_1 ; but, since only

one of the four subsets into which A and B divide E (i.e.,

 $(A-B)\cap E_{0}, (B-A)\cap E_{0}, A\cap B\cap E_{0}, E_{0} - (A \cup B))$ can have a mass $\geq \alpha_{1}$, it is not

difficult to see that such subset must necessarily be $A \cap B \cap E_0$). So the mass

$$\beta_{1}(E) = \begin{cases} 0 & \text{if} & E \notin \mathcal{U}_{1} \\ \alpha_{1} & \text{if} & E \in \mathcal{U}_{1} \end{cases}$$

is atomic. Put $\mu_1 = \mu - \beta_1$; if the mass μ_1 is non-continuous, then

$$\alpha_2 = \inf_{\mu_1}(E^{(p)}) > 0,$$

p€₽

and so it is possible to go on in the same fashion.

After n steps, we get

$$\mu^{\mu} = \mu - \sum_{k=1}^{n} \beta_{k}$$

and, if μ_n is continuous, eq.(4) holds with $\mu_0 = \mu_n$ and with each β_k null for k > n. If μ_n is non-continuous for any n, we get a sequence (β_n) such that the corresponding series $\sum_{n=1}^{\infty} \beta_n(E)$ converges for every $E \in \mathcal{C}$ (since $\mu(E) < +\infty$). Then $\lim_{k \to \infty} \alpha_k = 0$, and it follows that

$$\mu = \lim_{n \to \infty} \mu$$
 is continuous.

3. Non atomic masses.

In the classical case of a measure, non-atomicity is equivalent to