6 - Fibrati associati ad un fibrato principale

- Sia \mathcal{F} una categoria di struttura; sia \bar{G} un gruppo topologico e sia $\overline{\mathcal{F}}_{\bar{G}}$ la categoria degli spazi affini destri di \bar{G} .
- (6.1) <u>Osservazione</u>. Se \bar{G} opera a sinistra su uno spazio topologico F, mediante l'applicazione $\sigma:\bar{G}\times F\to F$, allora \bar{G} opera a destra su F mediante l'applicazione continua

$$\sigma : \bar{G} \times F \rightarrow F$$

data da

$$\sigma':(g,f) \rightarrow \sigma(g^{-1},f)$$
.

(6.2) Proposizione

Sia $\mu \equiv (P, \bot \bot, B, Y)$ un fibrato principale topologico destro di gruppo strutturale \bar{G} .

Sia F un oggetto di $\overline{\mathcal{T}}$, sul quale $\bar{\mathbf{G}}$ opera a sinistra, mediante l'applicazione

$$\sigma: \bar{G} \times F \rightarrow F$$
,

tale che

$$\sigma_{\mathbf{q}} \in \operatorname{Aut}(\mathsf{F})$$
 ,

¥g ∈ Ḡ.

a) Sia $Q \equiv P \times F_{/\tilde{G}}$ lo spazio topologico quoziente relativo alla relazione di equivalenza indotta dalle orbite di \tilde{G} il quale opera a destra su $P \times F$ mediante l'applicazione continua

$$T \times J' : P \times F \rightarrow P \times F.$$

b) Sia $\underbrace{\overset{\sim}{\Pi}}: P \times F \to Q \qquad \text{la proiezione canonica.}$ Sia $\overset{\sim}{\pi}: Q \to B \qquad \text{l'unica applicazione tale che}$ il seguente diagramma sia commutativo:

c) Sia C: P \rightarrow Ogg $\overline{\mathcal{F}}$ l'applicazione costante C: p \rightarrow F.

Sia $\mathring{\gamma}: Q \to Ogg \mathcal{F}_{\overline{G}}$ l'applicazione indotta dalla famiglia di biiezioni

$$\{t_{q,f}: \widetilde{\Pi}^{-1}(q) \rightarrow \Pi^{-1}(\widetilde{\pi}(q))\}_{q \in \mathbb{Q}, f \in \pi^{2}(\widetilde{\Pi}^{-1}(q))}$$

date da

$$\{t_{q,f}:(p,f)\rightarrow p\}.$$

Sia J̃: B → Ogg J̃ l'applicazione indotta dalla famiglia di biiezioni

$$\{s_{b,p} : \pi^{-1}(b) \rightarrow F\}_{p \in \coprod} -1_{(b)}$$

date da

$$\{s_{b,p}: [p,f] \rightarrow f\}_{p \in \coprod} (b)$$

- d) Allora $\phi \equiv (PxF, \pi^1, P, C)$ è un fibrato topologico con struttura in \mathcal{F} , di fibra tipo F;
 - $v = (PxF, \hat{\mu}, Q, \hat{y})$ è un fibrato (principale destro) topologico con struttura in $\mathcal{F}_{\bar{G}}$;
 - ψ ≡ (Q, π, B, J) è un fibrato topologico con struttura in π.
- c) Inoltre π^1 è un omomorfismo di ν in μ , su $\overset{\sim}{\pi}$; è un omomorfismo di ϕ in ψ , su $\overset{\sim}{\perp}$.

Tale risultato suggerisce la seguente definizione.

(6.3) Definizione

Sia $\mu \equiv (P, \mu, B, y)$ un fibrato principale topologico destro di gruppo strutturale \bar{G} .

Sia F un oggetto di $\frac{3}{2}$.

Si dice "fibrato topologico, di fibra di tipo F, associato a μ " ogni coppia $(\psi, \overset{\sim}{\mu})$,

dove $\psi \equiv (Q, \tilde{\pi}, B, \tilde{J})$ è un fibrato topologico con struttura in \mathcal{T} , di fibra tipo F e \tilde{H} : PxF \rightarrow Q è un'applicazione continua, tali che il seguente diagramma sia commutativo:

7 - Relazione tra fibrati associati e ricostruzione di fibrati

Sia \Im una categoria di struttura. Sia \Im un oggetto di \Im e supponiamo che

$$\bar{G} \equiv Aut(F)$$

sia un gruppo topologico.

Sia poi $\mathcal{F}_{\bar{\mathsf{G}}}$ la categoria degli spazi affini destri di $\bar{\mathsf{G}}$.

Si osservi ora che un cociclo a valori in $\bar{G}\equiv Aut(F)$, relativamente alla categoria \mathcal{F} , è anche un cociclo a valori in $Aut(\bar{G})$, relativamente alla categoria $\mathcal{F}_{\bar{G}}$, in quanto \bar{G} opera a destra su se stesso. Pertanto, da un tale cociclo si può ricostruire sia un fibrato con struttura in \mathcal{F} , sia un fibrato (principale) con struttura in $\mathcal{F}_{\bar{G}}$.