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linear, Let

£(s) = As + B

i
k

K () = Zaki Xpi t Py o
=1

then the solution of the optimization problem (27) is a
plece=wlse linear function ¢ . In this case the reduced game

can be solved easgily as it 1g shown in [10_], PPe 43=44,

p

5, Multiproduct oligopoly game

In this paragraph we will consider the game having the

gets of gtrategies

X, = l:o, Lkm_] X eee X |0, LKLM)J (30)

and pay=off functions

M /' n n
'Pk(é-l“'”an) = lektm)fm (ZX‘E(]_) seeey ZlXéM)) = Kk(&:{)’ (31)
M= 4=

4=l

where J_{:k = (X}El) :n--:xl({'M)) g %(Kk) = XK’ ‘R, (Kk)c Rl 9
-~ n " - n T

B(f,) =109 z lél] X eoe X |0, Z__LLLM) , R,(fm)CRl for
L ¢=1 - - =1l -

k=l,2,00es,0 and m=l,2,.,M, This game can come up if the
factories manufacture different products and sell them on the
same market, Let M be the number of products, and let xf{m) .
Ik(m) be the production level and capacity limit of factory k
from product m, ILf fm donotes the unit price of product m, than

it is assumed that fm is & function of the total production

levels of the different products., The function Kk ig the
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DI0GLTT LD Cog L. and using the avove terminology tne lncome
or facLory k .o given by Ifunction (31).
oimilar interpretation can be given to the othexr applications
shovin in the section dealing with the clasgsical olligopoly game
oput different gualities of water and waste=water have 1o pe
introduced,

T.e Tollowing result is basic in the theory of multiproduct
econom-.es, and it is a generalization of part ¢/ in the proof

of Theorenm 4.

lemma ll, Let g be a vector=vector function such that

. N,
(&) is a convex set in the nonnegative orthant of R — ,

?\,(g)C‘: RM. Aggsume that the components of g are concave and
continuously differentiable., Let J Dbe the Jacoblan matrix
of g,If d (3) + J @_c_\:r“ is nonnegative semidefinite for arbitrary
x € 9(g), then the function

n(x) =z &(&)

18 concave,

Proof, Let \/ denote the gradient operation, Then simple
calculations show that
— T -
Un(z) = &) *x J@&) (32)

Since the components of g are concave, we have

E(X) - 8(F) £4@)@ - %) (2L €r@) (33)

and the condition given for the Jacobian J 1implies
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The inequalities (33),(34) and y > O imply
L {5(1) - ax)} ¢ . c(Z)L = X) £ £ JE)(L = )
consequently

L a(L) - & EE) £ | & £)" ¢z J@)] (L - &)

which and equation (32) give the inequality

B(x) = n(x) € VRE)L = X))

Thus function L 18 concave,

As a corollary tc this general regult we can prove tne

main result of this sec* ',

Theorem i. et i = kfj,"',fﬁq)’ and let g ne tne

Jacoblian of f, Assume that functions £

continuousjthe components of f are continuously differentiavle

and concave, K_is convex and for arbitrary s & ¥ (f) tre

matrix J(g) + ;-T(g_\T is nonnegative semidefinite., Then the

game has at least one equilibrium point,.

Proof, Since Xk is a closed, convex, bounded subsetv 0T

RM; Lfk is continuous and lemma 1ll, implies thnat ~¥k 18

concave in X, , the game satisfies all conditlions of tne

Nikaido=Isoda theorem, Thus the game has at least one

equilibrium point, B
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Remark. The theorem does not give numerical methods for
the determination of the equilibrium point. But in the linear
case a very efficient algorithm can be constructed which 1s a
generalization of the method of M, Manas given for the one=-

=product case,

et us agsume that
M

1 gl \  , (m A
Kk& ]:E ),-III,XL i))-': L }Lk(:m) X«ém) + Bk (l{=.L,zi,cii,ﬂ),
=]
If'

:}“(8(1)“_”6@&)) i Zaim) Jm) o, (1 g g
m= 1

m )

: m) i .
where s( = Xé_ o et us introduce the

W[‘\/l
1 =
—

——
P

i M
following notations: LlB) 2 Z__L,ém] y 4 = (a&m)\ n=1 *
;A 9T

Finglly let us assume that A + iﬁ.T is nonnegative semideiinite,
Under the above conditions the game has at least one equilibrium
point, and since Ufk is concave in x , a vector

= (;if,...,gz‘) 18 an equilibrium point of the game 1f and

only 1f
( <0 for xM®=o0
ﬁ-};—%—(i)— J > 0 for x}mm . ngm) ("l‘ k,m) (35)
k =0 for 0< NP A
where :_{_: = él)ﬁ,...,xémlﬁ) (k=l,2,...,n).
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’ - U otherwise
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L > O otherwise,

then by calculating the partial derivatives of 4}{ we can
easily verify that the conditions (35) are equivalent to the

get of equations (see [10] PPe 46-47)

. | | |
. Laﬁ)s(m) LY et A.E:) -y 0 )
m=1 m=1

for "'{"=l!2!"'!m } k=ljzjllijri = where

S\m) Z x}ém)' (38)

The above system can be written in a simpler form 1f we

introduce the following notations:

(<o, Wy,

&

el
2= (A8.a., 200, a0 a00)
e (v, VL L, )
zZ = (zlu),..., zl(M],..., Z.E{D,uu Z;M)) T
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Furthermore let E denote the Mn x Mn matrix

(«' i eee Lt _;_‘, . \
S S ' !

Px+b=-a-yv+2z2=J
z + W= 4 (39)
T T T
L z=y w=y z=0
Xy Vs 29 W >0 &

Thus we have proven the following result,

* Cm e * L
Lemma 12, A vector X is an equilibrium point ol tne

, T

linear oligopoly game with nonnegative definlite matrix + A

-

if and only if there exist vectors 1#, ﬁ?, g# such that
conditions (39) are satisfied with §|=|§ﬁ, vV = z#, W = E?

and Z = zﬁ .

In a further special case the uniqueness of tThe equiliorium

point is assured, as it is shown in the following theorem,

Theorem 8, Assume that matrix A is symmetric, negative

definite, Then the game has a unique equilibrium point,

Proof, ILet us consider the quadratic programming problem
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= X
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F_.rst we prove that problem (40) is a strictly conve:

-

programming problem, 1t is sufficient to prove that wmatrix P

.
. . . - , jUirgl .
ls negative definites €1 L = (Uysseesrl )E R, where

s - : ~
%, € B for k=1l,2,6eeyne Then

M) I. .
bl m - _— m
“Pu = wooOA W+ N our A u. o=
= )~ k = Sk T L— L oE =
K= i=l =1
N / N 1}
m IY—' ’e \
- = 4 1 f 31
‘E E.k;é"."ik*(ﬁ X & E .‘:tj/<”
K= 1 boi=1 =1
\ ()

for u# 0 If & 18 symmetric, thnen obviously P is aisc

gymme tric,

llext we observe ithat conditions (39) without the equatvion
v: z = 0 are the Kuhn-Tucker conditions of the quadratic

programming problem ,cgee G, Hadley [3]), and since 1t 1is

convex, the Kuhn-Tucker conditions are necessary and sufficient

conditions for the optimality. The fact that the matrix g 1S
negative definite implies that problem (40) has a unique
solution, and since the game has an equilibrium point whicn
must satisfy system (39) we conclude that the unique solution

of (40) gives the unique solution of (39), which is the unique

equilibrium point of thne game,

r

Remark, he numerical solution of problem (40) can be

obtained by standard methods (see G, Hadley {}]}.
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Finally we remark that the statements of Lemma 12, and
Theorem 8, can pe extended for the multiproduct group equillbrium

proolem, but the details are not discussed here,



