l. General results

i mathematical game is a set [ = (n; Ly X5y eeesipi
flf‘?Q’ ""‘fn)’ where n is a posgitive integer, Kl, 12""’Xn
are arbitrary sets and the functions ¥, (l < & £ n)are such
that @ (4,) = &y X Xy % ees x X, & (4,) C R Here n it

called the number of players, the sets Xk are the strategy
sets and the functions v, are the pay=off functions, issuming
that the first player chooses the strategy %, € Xl s the
second player chooses the strategy =X, &« X2 , etc., than the
value u?k (Xl’ Xoyr eeny X)) is considered to be the income

of player Xk (k = 1,2,...,n}. In the special case of

n
E:: ¥i = U the game is callec a zeY0o sum N=person Jame.
i=1

Definition 1, & vector ;? = (x?,...,xﬁ‘) is a Nash-

-equilibrium point of the game [ y 1T

-3 -
a/ X, € £, (k= 1,2,...,1’1);
b/ for k = 1,2,eses1 anc arbitrary Xy € &)

\Fk (X.;E, EE) xk, OCOX;; ){ fk (X?f, veey x;,ooc,lﬁz]. (l)

Remark, The equilibrium strategy x§ is optimal for she
player k assuming that the other players choose the corresponding

components of the equiliberium point,
Example 1., Let n=2,

~r At [l
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In this special case the game [ is called a two=person

finite game, Let us introduce the following notations:

1]

‘-(’1 (313) a.

1J

Go (13) = gy (=l2ieeemys 351,25 000,35),
L= (agg) B= (b

Observe that 4 and B are m, x m, matrices, The inequalities

-
<

P
L

(1) imply that a pair (io’ io) is an eyuilibrium point if

and only if

b. : < b, . ;
10 = 10, (3=l,2,..,m2)
a £ a (i=1,2 m
5 s = 504 - y&-ye ooy 1}
Yo 0“0
In other words, the element a. . is maximal in 1ts colwx
~oY0
(in matrix g), and the element bi j ig meximal in ite

00
oW (in matrix B). From this simple observation we can

eagily verify that the game determined by matrices

1 0 0 1

[ {§o=5
il
o™
1]

0 1 1 0

has no egquilibriuwn point; the game with matrices

L 0 1 o
] ) , | -\ )
\ O 1 1 O

has a unique equilibrium point (1,1) ; and any pair {:,j) o

[

i
H

the game given by wmatrices

/1 1)

1
\.'. 1,

is an equilibrium point,
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for finite

The computation of the equilibrium points
a iinite number of inequalities

ames 1s an easy Job since
¥

has to be checked,

|

Example 2, Let n=2,
, , ull f .
X — % ‘.‘ n - ~ 1 5 = 1
1 T{E R R T g2, 275 =1,
[ Iﬂe o m 'L
X, = R " = 17 x, = 1)
2 "{Z | o @R 520, LTx =17,
T, Ty
. X~ A= 4 ~ > = X X,
fy (Erv B\ Ep A Zp s Yo (Fpy X)) 7 E 2 X
the vector 1 has unlt couponents,
above

The pgame deiined

= e 4L

0 is the zero vector,
real matrices,

In the special case ol
It is known that

i,
P
-

where

and 3 are
bimalirix game.,

A m, X m
= 1 2
the

ig called =

£ alle o

Pt

called a matrix

IS
problem of matrix games is eguivalent 10 Tne
crium

the game 1
equilibrium
golution of linear programming problems and the equili:
probdem of bimatrix games can be golved by the solution of
quadratic programming problems, The details will be discussed
later, Note that the bimatrix games are generalizations,
extensions of finite two-person games, since the strategies

of the players are the choices of distributions defined on

the sets {1,2,...,m1} and {1,2,...,m2} instead of the choices

.
- 4

-~ &

of one-one element from each set, The pay=~off of the genera. zed

game is the expectation of the pay-off obtained in the fin

game with respect to the distribution chosen by each player.

Example 3, let us consider the following n-person game
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where & is an 4, x m, real matrix, D € R is a real
vector, the numbers aik) i are given real parameters, and
l..l
for k=l,2,,0es01 , X, = kx(k),..., xék)). This game is callec

k
a generalized polyhedral game, To simplify our notations let

ml ty LY
(k) .\ (
a; (x) = ‘o E:j 2;* E:: eool cool X\l)
l k—l' k+ n-
. Y(&—l x£k+l)... Xép)’
k-1 k+1 n
and
, (k -
2(x) = (2@ o0 m)T
then
: B T
T(E) = & (X)) &
where Qk(E) is independent of x, .
In the special case of
f_-; 9
é_y = _l_ 3 p‘k -.:/1
- -1
i}

(where L1 1s the U, dimensional unit matriz, L, C e R s

the vector O 1is the zero vector, the vecitor 1 nas unit



components ) we have

Xk“{zklﬁkﬁﬁmk’x_kigs ZL.Tzk=llj,

and the game ig called the mixed extension of finite n-person

games, Observe that for n=2 we have the bimetrix games with

pe () e me(s3,) -

112 112
gince
m m
o — ) _(2)__r
Yo(Zpr Z2) = ) 2._ 83, X% E EX
b . 172 1 -2
11_1 12=l
BIld ﬂll m

¢, (m0 Z)= 2= 2 o) =D 2 e xl By, .
2 oo Mt e
e

Pirst we will show the connection between certain mathema=-

tical programming problems and two-person zero sum games,.

let us consider the mathematical programming problem

g (z)>Q (2)

where X is an arbitrary subset of R /it may be discrete/,
n .
g (E)CE REVCR", B (£)C B, R () r . Let
m m -
R ={u|mer", u30},
and let us consider the two-person zero sum game

M=(2;x,r ;7 -7),

~
k -~ )
o



where

Pz » ) = £(x) + v’ g(x).

Lemmg 1, If (g:_ﬁ, u®) is an equilibrium point of the
game [* , than x° is an optimal solution to the programming

problem (2 ),

Proof, The inequalities (1) imply that if (z, u®) is
equilibrium point, than

£(2®) + o g(x¥)> £(x) + & &) ($z€x) (4)

e(z®) + B g(®) g £(7®) +uT &) Wuer). ()

First we observe that g(g:_x) > 0, Let us assume that a
component gi(fi) < 0, then taking the ith component of u
sufficiently large, the inequality (5) will not hold. Let
u = 0, then inequality (5) implies }fT g(f) < 0 , But
ut > 0, g(x") > 8, consequently __u_xT g.(gc_i) 2 0, Thus
mgE®) =0,

=

since x" € X, g(z™) > O, the vector x~ is a feasible

golution of the problem (2). We can easily prove that " is
an optimal solution. Let x Dbe any feasible solution of the

problem (2) . Then inequality (4) implies

e(2®) = £(& + v &(x®) > r(x) +©™ AF D 2(x)

thus _:g_“ is an optimal solution. L



Remark, The opposite statement is not true in general,
The Kuhn-Tucker theory gives sufficent conditions, for an
arbitrary optimal solution of the problem (2] %o be obtainable

from an equilibrium point of the game I .

Newt we will prove that the equilibrium problem of n-person
general games i%s equivalent to the fixed=-point problem of a
certain point-to=gset mapping., Let us consider the n-person

game 1in a more generalized form: M = (n ; Kl, K2, vees Lo

?l, fz, ...,‘fn), where n is the number of players; Kl’ Kz,...,Xn
are the strategy sets of the players, K(Z.Kl X K2 XeeoX Kn is

the simultaneous strategy set, the functions %1,~§2,...,.Pn

are the pay-off functions such that 9B (»fk) =X ,R HK}C Rl |
(k=l,2,...,n). Here we assume that the players can not chocse
their strategies independently of each other because oI
circumstances independent of the players /for instance in
production games it is inpossible all players to have maximal
production becauge of the bounded quantity of row materials/,

and in the concrete realizations of the game only the elements

of X can appear as strategy vectors.

B
n

Definition 2, & vector ;ﬁ = (x?,...,x ) is an equilibrium

point of the game IMoir
a/ £ €% ;
b/ for k=l,2,..e,0n TfOr arbitrary (ﬁ?,..., Lis eees x§)€ o,
%

/ . 6
\Pkkxiliscoog Kkyoioy Xl,l)":_; *k(}zi,.‘.’x{;,“"xi). ( )

Let us consider the following function,
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say that palr (X, y) is feasible if x € £ and for

k2lyZ2yseesll (Kj,ﬁa.,ykﬁﬂ.agxw) £ £ o Then function 4’ 36
e 8, ey

(Y

defined for arbitrary feazgible pairs (5; Ve

& .4'

LRS-

T - - . 3 ® L e
Lemms 2., The vector X = (xjs,.egxw )13 an equilibriua
point of the same b1 if T S P by by P e b

point of the game if and only 1f for arbiltrary feagible

pairs {E‘Eﬁt vy s (I)(f , x7) (..I} {_}Exﬁ .Y.)-

ot

ny

Froof, o/ Let us aspume thal X 18 an equilibrium

/

o ST : o = ®
point., Thern for arbitrary k and \xlg.o$,ykfgwﬁgxﬂ} & I ihe

inequality holds

r

L?‘K {\._ﬁijo"“’xk"‘egxn) ;‘: ?k (xl’dvegykjcﬁigxil‘)s

let us add these inequalities for k=1,2,..e,0 and let

{ %] =]
y = kyl,,,ﬁﬂyn}, then we have

o a
T oo H # # Y _ g, ¥ ST op et .

T’k k""{l?ﬁf}d"xk-’a‘.’}r‘_ﬂ_ )‘:q)\‘i& 5 2{; ) é’ iw r'r( tX}.y&-ﬂei&"l{'a E R
k=1 k=l

- . .ﬁ - 3 )
b/ Let us now assume that X A and [or an
. : , . / \ LB Y o g [ R
srbitrary feasible pair (x5 , y ), P » 2/ 2 P&+ 1)
o . . e S B ) B ~ o
et ¥ be Tixed aaud letv ¥y = {g1,ﬂh@@xkg.@»9mr) & L . Then

sovioualy the palx Ly ¥ \ i feasible and

i



Sz, 2 > pEF 5 1) (7
Since

$(z"» &) = § PiE) + P EreeesBpranasxy )
i#k

and

S, z)= T 0 (F) I (Freearmprecansy)
ik

the inequality (7) implies that
#
Lek (x?,...,x:,...,:gi:) é \fk (XT,.“,XK,...,KH ) ’
thus ;? is an equilibrium point, i
By using the above notations let us introduce the following

point-to=set mapping

$ (x) ={.t. | (% &) is feasible and d(x, 1) = max {(z, ¥) 3(Z 5 ¥

is feasible}] .

‘s a gimple consequence of Lemma 2, we have the following important

regult,

A

lemma 3, A vector ;? is an equilibrium point of the game
¥ and only if x* G.d)(g?) /i.e. x® is a fixed point of the
napping P /.

The most important existence theorem for n-person games cean
be proven by using the Kakutani fixed point theorem for showing

that the mapping <t> has at least one fixed point, This theorem
ig called Nikaido-Isoda theorem and it is the following:

Theorem 1, Assume that

a/ X is a bounded, closed and convex subset of a finite

dimension Eucledian space;



b/ for k=1,2,..s,n the functions *?k are continuous
and for fixed Xlgooo ;Xk_l, Xk+1....,xn they are concave 1in xkc

Unde¥ these assumptions the game has at least one equilibrium point,

Proof, See J,B, Rosen [8] . i

Remark, If we assume that the functions 4’k are strictly
concave in Ly then the uniqueness of the equilibrium point in
general is not true /see Example 4.,/. For the uniqueness of the
equilibrium point of n-person games J,B, Rosen (8] gave sufficient
conditions, but the assumptions of the next paragraphs are

independent of the conditions introduced by J,B. Rosen,

2+ The solution of a special clags of concave games

Let us assume that for k=1,2,s¢05n

L= {m |5 €R ) B (%)% O

where ;
a/ B(h) = R ,R(g&)c_ak

concave, continuously differentiable functions;

s the components of gk are

b/ X, is bounded, and in each point of X, the Kuhn-Tucker
regularity condition holds /see G, Hadley [3]/ ;

¢/ Y, is continuous concave in x,  for fixed ZXjj...,
voey Zy 15 Zp yrecesX, and continuously differentiable with

respect 10 X .

lemma 4, Te game [ = (25 XyseeesXy 5 ¥preees fn) has

at least one equilibrium point,



w ]] -

Proof, It is obvious that all conditioms of the Nikaido-

=Igoda theorem are satisfied., |
Let k=1,2,,.0yn and for fixed strategy vector

E? -

= (x?, xg,...,xg‘) consider the mathematical programming
problem

B (%) 28

(8)
LPk (;‘El’ooap _X_k’ eewy .y:ff)—_) max .

Lemma 5,

A vector Eﬁ=(£§gooo, .X_:)
point if and only if for k=l,2,eee,n X

is an equilibrium
of the problem (8) ,

X, is an optimal solution

Proof, a/ If ,5: is a feasible solution, then the constraint
implies that 5; e Xk s thus gﬁ = (g?,...,;i) is a strategy vecior.

If ;; is an optimal solution, then for any feasible solution
& # % 5 ®
ﬁiexki Lfk (x_lgcoo, g&k,ocn, g"ﬂ)-\; ‘-Pk (Elgooog zi_k’ccog %)o

Thus x° is an equilibrium point,

b/ If x*

X is an equilibrium point, then inequalities

(1) imply that the components gg are optimal solutionsof the

problems (8) . @
Lemma 6. A vector Eﬂ = (ﬁggcoo’ Xi!

x,) is an equilibrium point
if and only if for k=l,2,¢0¢,n there exists a vector Ly €R ¢
such that

L (9)
w b (=) =0
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/where v, ¥ is the gradient vector of { with respect
k k k

tox, and V, b is the Jacobian matrix of hy/.

Proof, Under the assumptiions given above, problem (8) is a
concave programming problem., It is known that the Kuhn-Tucker
equations and inequalities (9) are gufficient and necessary
conditions for the optimality of a vector gf: (k=1,2,444,n) /see

Hadley L3]/ . [}

To the sake of simple notations let

Wi (2 &) = VihE) + -“-g Vi & (F)»

where x = (X X
&L ("’l,...’ __‘n)o
Now we can prove our main theorem,

® . Cm e
Theorem 2, A vector Eﬁ = 5?,..., En) is an equilibrium

. . . . . *
point if and only if there exists a vector g# = (gf,...,g ) such

n
that (33, Eﬁ) is an optimal solution of the mathematical proug-

ramming problem

e = 8
Ty (3 ) =9 £=1,25000,1)
Qk (%) 2 9] (10)
T /

n

= m |

>L" L & (&) —> 1in.

k=1

Proof, a/ Let x° be an equilibrium point /Lemma 4,
implies that there exists at least one equilibrium point./ Then
there exists a vector Eﬁ = (Ef,,,.,gz‘) such that the equations

. s i p o a o ® 3 .
and inequalities are satisfied for Qe = o thus the value of
N %

the objective function of the programming problem (lo) is zero

for w = E§ y X, = 5: . Por arbitrary feasible solution (z, u)

-
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of (lo) the objective function value is nonnegative, thus

L ® - L , .
(; , W) is an optimal solution,

~r

o/ let {gx, u™) be an optimal solution of (lo).
Jince it is a feasgible solution, each term of the objective
function is nomnesative, conseq€B¥lY <the value of the objective
function is nomnegative. sut for the equilibrium point of the
game /which exists/ the cbjective function has zero value,

. . . . . . #
thererore the optimality of (

™

, gﬁ) implies that the objective

function at the point (;ﬁ ’ gﬂ) must have zero value, cince all

terms are nomnegative in the objective function, all terms are

equal to zero, Thus the equations and inequalities (9) are valid

*u= g? y consequently lemma 6. implies that EK

<

for x =

B

is an equilibrium point, ]

Remark 1, Problem (lo) is a mathematical prosramming
problem which can be solved by numerical methods /e.g., cutting

plane or zsradient type algorithms, see G, Hadley [3]/.

femark 2, In the special case of n=2 and +2 = - Y,

Es

problem (lo) was discovered by 1,D,Canon [2] .

Finally we willshaw welle-xnown algorithms can ote derivec

from tne above zeneral methou as special cases,

general polyhedral -sames

Using the notations of Zxample 3, we have

. A\ T
VK‘fF (X)) = é};i:)

v

r B (&) E
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gince
P () = g (2) %
B (%) = B - o5 %
Thus problem (lo) has the form:
o= 0
B () - By = O (k=1,2, 000 ,m)

- (11)
by = &y X = Q

I
T , .
Z Ek(hk“zﬁkl_f_k) —> min,
k=1
let us observe that the second constraint implies that
T A
g (E) = Y &y »
and by using the fact that l?k (Z) = & (E]T X, We can write

problem (11) in a more convemient form:

w0
T T r
g‘k(z) - B—k ; = -Q-E (k‘_'l'zg eeeoyll )

(12)

Ag g special case let n=2, Since

81 (%)= &3 2p(X) =23 %
(1)

where A = (a.
= +1*2

) and

g
/T~
o~
== N

e~
no
S

problem (12) can be rewritten as



>
un 29
Egi’g
T A
o £ =4 g =L
., (
X] 2 - Yy & =X 13)
-z %28
- A% DO
95 o L5 2 X
2
T‘ —VT’I,‘..L.' s
b (B ) -z (g 2)x — win,
=1

whicn is a quadratic programming problem with linear constraints.
let us observe that the unknown vector (gl, Xos Uy 32) ig
Wy + Wy + £1 + %2 dimensional, In a further special case when

= - 4 /zero=sum case/, provlem (13) is a linear programming

—

g

problem, which can be solved by the simplex method,

lixed extension of finite games

Lis we have seen in Ixample 3.1in our case
\ ¢

T X
=k .
m ’ /

1 \-1

-
1]
/"——“ ~—
i ]
i LTSS

-
o
il
'_-I

Let us write the vectors u, in block form corresponding

to the special block form of 4 and Db, then we nave

‘v,
e
/
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Rk

notations problem (12) can be written in the form

where v, (4] , o, and /5, are scalers, Using these special

£

w29
Xy > 8
b, 20

(k=152,004yn)

(24)

|_..J

Al
il R4
oo

n
Z(“‘k <y - Ay (2)) — .

Let us observe that the nonnegative vector Y, appears only in
the fourth constraint and we can introduce the new variable

¥, = &, =p, , which is not necessarily nomnegative. Then we
cet by multiplying the objective funciion by =1 the following

problem:

2, (x) ¢ ¥, 1

x >0 (k=1,2,...,n)
LT X, =1 (15)
n
Z (“?1: (Z) - \{’k) — max
k=1

which is the method of H. lills [6].

Bimatrix games

From the previous case the bimatrix games can be obtailned

by choosing n=2, Simple calculations show that



=3 (212252’ 8 (x) =

o
i
I
—

= 51‘5.?2 1
%z, > 0
=] = e
L2 2 (16)
i §l=1
_}.i §2=l
T r. N ; -
1 (E + 2) Too= ¥y =¥, momax

which is a quadratic programming problem with linear censtraints
and it was discovered by O,L, langasarian and H, Stone [5].

For matrix games

i

, thus problem (16) is a linear

-

programming problem, which can be separated with respect to the
variables (El’ ¥ o) and ng, Y1), and so problem (16) can be

reduced for two linear programming problems

"
]
HTN

L

o hﬁ

(7)

o
ny

|M
™
(2N
1
[

and

x>0 (1.3)

where the problems have W, + 1 ana

" Fl 1 3 e abh Tt e R ] (s - Toan
my + L var l;li?ll.‘i:—) TOeSPUCTLYE LY
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3. The clagsical oligopoly game

In this section we will discuss a special economic game

with sets of strategies

X, = o, L] (L > o k=1y2y000s0) ) (19)

and pay=off functions
n
—
‘-fk (Xl""’xn): X, f(in) - Kk(xk)’ (20)
i=1
where the functions f and Kk mugt have the properties:
n
= N7
()= [0, L], where L= I, ; B(x)= [0 L 7;
i=1

R(f)C Rt and :R.(Kk)c_‘ Rt . The game defined by the sets of
strategies (19) and pay=-off functions (20) is called the

clagsical oligopoly game,

Before discussing the equilibrium problem of this game we

gshew how the game appears in seme applications,

Application l., Assume that n factories manufacture the

gsame product and they sell it on the same market., let f be the
unit price of the product being a function of the total production
level, and let Kk be the cost function of the manufacturer k.

Then Lk is the production bound for manufacturer k and
?k:(xl,...,xn) is its netto income assuming that x, is the

production level of the manufacturer I for 1i=1,2,.0e50 &

Application 2, Assume that a multipurpose water supply

gsystem has to be designed. Let the water users denoted by k

(&=1,2,400,n) and let the water quantity given to user k be
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denoted by Xy If the capacity bounds of the ugers are denoted
by L., then obviously Xy € (0, Lk] for kzi,2,...,n. et I

be the investment cost being a function of S x., let w (X ),
k=1

vk(xk) and wk(xk) be the production cost, income and the economic
loss of the water shortage /penalty e.t.c./ of user k,
respectively. let us assume, that the total investment cost is
devided by the users in the rate of the water quantity used by
the water users, Thus the total income of user k can be determined

by the function

- -n—xk— T2 =y ) = (k) * (%) = () - (21)
‘Ej X, i=1
i=1

By introduceing the notations

Sp——
Z x4 =t
i=1

() = me(®e) = vie(®) (%)

function (21) has immediately form (20).

Application 3., Iet us now assume that n factories are
on the bank of a river and they send a certain quantity of
waste-water to the river, It is also assumed that the total
penalty paid by the factories is a function of the total waste-
-water quantity sent to the river and it is devided among the
factories proportionally to the waste-water quantity sent to the

river by the different factories, let Lk be the total waste-
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-water quantity produced by factory k, let X be the waste-water
quantity sent to the river by factory k. Then the total "income"

of factory k can be given by the formula

n

2 ) o (- x ), (22)
X, i=l
i=1l

where P is the penalty function, Ck is the cleaning cost of

factory k. Let

23 xi)" - P w ) B(n) - O ( Ty - AR
i=1 S % i=1
i=1

1

then the function (22) immidiately has the form of (20),

Firgst we shaw theat the equilibrium problem of the classical
oligopoly game is equivalent to a fixed point problem of a one
dimension point=to=set mapping, It will be much more convenient
than the application of the fixed point problem of Lemma 3, since

the latter is an n-~dimensional problem,
Let

‘Vk(é, Xy tk) = tk f(s - X tk) - Kk(tk)
for k=1,2,..,n, s & [0, L], %, €0, I, ]Jand t, € [0, ¥.7 ¢
where rk = min {Lk, L =8 + Xk}' Since {k > 0, the interval
for t, can not be empty. Fér k=1,2,..,n ; 5 &€ Lo, 1); =z € [O, L]

let

Y (ss %) = {tkj By € L0 ¥ilowy (5r ®yr ty) =

Osu, Er, Vilos o w)
K
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and for k=1’2’¢¢’n y B Q [O, L] let

% (s) = {x | = € [0 L ]s x, € Ty (s, %)

Lemma 7, A vector ;_cﬁ = (Xf,...,xg') is an equilibrium point

of the classical oligopoly game if and only if x, @ X _(s")
n .

(k:l,z,...,n), Where sii = X: .

k=1

Proof, The definition of the equilibrium point implies
that a gtrategy vector ‘_‘c_ii = (x’f,...,% ) is an equilibrium point
if and only if

% ./ % * # . /R # ]

X, f(s - X + xk)- “k(xk) > by i(s - X + tk) - B () (23)
for k=l,2,..r.l,n and t, € (o, L. ]. /It is easy to observe that
for g% _ Y:c’; » ¥, =1L/ Inequality (23) is equivalent

i=1
to the fact that =xr € 7, (s%, x), that is xp € X (s%). &

let us finally introduce the following one dimensional

point=to=get mapping:

n
X(s) = {u 1u = in y Xy gxi(s)} (s € [0, 1]). (24)

i=1
lemma 7. and definition (24) imply the following important result,

Theorem lo A vector Eﬁ = (X?,ooo,xlﬁl

) is an equilibrium

point of the classgical oligopoly game if and only if for

n
g = Z‘ xji_‘ , s*¢g X(sﬁ) and fOr k=1,2,.e6yn, XE € Ik(sﬁ)-
i=1



remark, The solution of the zame has two steps:

step 1: the solution of the one dimensional fixeda point
problem g% €'K(sﬁ);

btep 2: the determination of sets Kk(sx) and the cowmputation

. 3 * * .
of the vectors x = (xl,...,xn ) such that

-{f € . (5%)  (k=1,2,.4.,n) and s¥* = Z yf .
k=1

In the following parts of this section we will assume that

the conditions given below are gatisiied,
1. There exists a constant £ > O such that
a/ f£(s)y =0 <for s> £
b/ f is continuous, concave and sirictly decreasing

in the interval [O, €] .

2s Ior k=l,2,s..e,n function KP is continuous, convex

and strictly increasing in the interval [0, I, ].

Theorem 4, Under the above conditions the game has at

least one equilibrium point,

Proof, The proof consists of geveral steps,

. . 3 X .
a/ PFirst we prove that if E? = ckl”“’xn) 15 an

n
equilibrium point, then E::x§ < { . Let us suppose that
k=1

E:: x; > § + Then there are positive x§ and x, such that

k=1

0 <ka < xﬁ and E;i X? x> f . This implies
ifk
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\Pk (K?,-o-,xkaooo,}{:)= X_k.o - Kk(xk) > xkx‘o - KK(Xf{E) -

& % # C e : .
ﬁk (Xl""’xk"“’xn)’ whiclh 1s a contradiction to inequality

(1),

b/ Let 0

s 5= Carereira) 5 55 £ 0 5 € [0 ]
i=1
k=1,2,...,n}.

Next we prove that any equilibrium point gi

of the generalized
game [ = (n; XiveeasZys X5 Ppyeee, P ) gives an equilibrium
point for the classical oligopoly game, Let X +3 [O, Lk]‘

If (x?,...,xﬁ_l, Xys Xi qseeerXy ) € X, then the equilibrium

property for zame r zives

F (e} 2 9y (Fenirtponensl )

and if (xf,...,xk,...,x;f) Y, then

i (Rrenertpreenri )= 5000 = () < - 5, (0) =

=m{§ﬁyam=m@$mwmﬁﬁfwﬁm%m®
1
since (x?,...,O,...,Xz )G X,

-

¢/ lext we prove that if function h is continmuous, concave
and strictly decreasing in a nonnegative interval LA, B], tnen
the function xh(x) is concave in the same interval.

Let us first assume that h is twice continuously

differentiable,

Then
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{xh(x}}’ = xh’(x) + a(x),
{xh(xl}” = 2h’(x) + xh’’(x) < «,

which implies the assertion,

If h is continuous, then let 1 (m:l,E,..) ve twice
Ul
continuously differenciable, concave, strictly decreasing

functions such that lim hm = I,

I =» oo

let A€ xc<cy<€Il; X,H = Gy X-p =1, then for w=1,2...

(xx+ py)a, (xx - Hy) > «xh (x) + pyh (x).

3y the limit relation wm —>oce we obtain

(xx + py)a(xx ~ P y)D L xu(x) + Ayh(y),

thus xh(x) 1s concave,

d/ The parts a/ and L/ imply *that the classical oligopoly
gcame and the generalized game [ = (n; :1""’Kn’ L3 ‘91:---s-Pn)
have the same equilibrium points, Under the assumptions of the
theorem X is a convex, closed, bounded subset of Rn, ‘?k is
continuous and part ¢/ implies that \Pk is concave in Ky
Thus the conditions of the Nikaido-Igsoda theorem are satisfied,
consequently the game has at least one equilibrium point. o

not
Remark, The uniqueness of the equilibrium point isVassured

in general as the following example shows,

Example 4, Let n=2; 2, = L2 = 1,2 ;




£(s) = 2,5 = 8, ir 1,52 8 £ 2,5
QO ) 11 s > 2’5 3
Ky (x) = Ey(x) = 0,52 (x> 0),

We will prove that an arbitrary point of the set

X* = {(Xl’ X, )

gives an equilibrium point of the gzame,

1 =
-

U5 < xy £1, 0,5 & X5 £ 1, Xt Xy = 1,5}

Let x® g [0,5 ; 1] be fixed, and let
Y(x) = :’Cf(ls5 - X + Xﬁ) - Kk(x) (k=1929)'
It is easy to verify that

b 0) w R (<02) 1= 05 = 0501 - H) 2 0,

and

1
=
W
N
H
r_
p—
+4
[
!
&
\_:'\
f
”C.
A
i
"
H-‘n
T\
(@&
-

Wro(x* - O) =

Part ¢/ implies that function Y is concave in x,
consequently from the inequalities W’ (x™ = 0)> O and
W’ (xii - O) we can conclude that x° is a maximumpoint of

the function ¥ , Thus arbitrary x~ € X* is an equilibrium point,

Next we discuss a numerical algorithm for findig the
equilibrium points of the clagsical oligopoly game, Under the

agsumptions of Theorem 4, the following statements are true,

Lemma &8,
a/ TFor s G*EO, L1, % (s

(s} is not ewpty and is a closed
interval Lﬁk(s}, Bk(s[] y (k=1,2,000,n) ;



o/ for 0£s <s’<£ L the inequality 3B (s’) < 4.(9)
holds for k=l,2,40e,n

¢/ if £ 1is differentiable at the point s, then

£.(8) = B () 3
d/ if f is differentiable in the interval [0, 1] , then

4, (s) is a continuous function of s,

Proof, Perts a/ and b/ can be proven by simple mwmodifica-

tions of parts C/a/ and G/b/ of the proof of Theorem 1, in
paper [10], The statements ¢/ and d/ are proven in the C/a,b,c
part of the prooi of Theorem 1, in paper [10], =
Lemm.a ® II '}EF = (xlyco,,.:{‘: ) and. E e (X?ﬂgco.,:{n )
are equilibrium pointsof the classical oligopoly game having

the properties given in Theorem 4., then

AE TN

=

X,
k=1 k=1 n n

Proof, Assume that s* = Z x}f < g™® = ny& o Then

k=1 =1

S & -
] ® : #® R T E1
SRR IO D IENC FORE R

k=1 k=1 =1 k=1
which is a contradiction. ]

Corollary, The point-to-set mapping K(s) has exactly one

fixed point, which can be coumputed by the usual bisection method

(see F, Szidarovszky, S,Yakowitz [12]).
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Theorem 5. Assume that the conditions of Theoreuwm 4, are
satisfied. Let s° be the unique fixed point of the mapping
L(s)e Then all equilibrium points of the classical oligopoly
game can be obtained by the solution of the system of linear
equations and inequalities:

Ak(sﬁ) < X

" g BK(S§£> (k-—:l,Z,...,n)

o}

=1

23

Proof, The statewent is a consequence of lemma o, and

Lemma 9, ’ﬁ

Corollary. If in addition to the conditions of Theoren 4,
function f is differentiable on the interval [0, L], then the

equilibrium point is unique,

Remark 1, It is interesting to observe that the game is

not linear but the set of equilibrium points is a simplex.

Remark 2, The uniqueness of the equilibrium point depends
on the differentiability of a function and not on strict

concavity as it is usual in the theory of nonlinear programming.

Special cases.

l, In case of f and K (1 £ k¥ £ n) being twice differentiable
the uniqueness was proved by 0,0pitz [7] without giving any

algorithm for finding it.

2, Under the assumptions of 0, Opitz, F. Szidarovszky (9]

proved the existence and unigueness of the equilibrium point
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and also gave an iterative algorithm for computing it.

3o 1f the cost funciions I are identical and the
conditions of 0,0pitz are satisfied, then E, Burger (1] proved
the existence and uniqueness of the equilibrium point and also
gave an algorithm to compute it, e remark that the algorithm

of Szidarovszky is a generalization of Burger’s method,

4, If the functions f and K_ (k=1,2,...,0) are linear,
then the existence and unigueness was proved by Il Maﬁas,[ﬁ] s
who gave an algorithm which ig independent of the method of
Szidarovezky. VWe remark that using the result of Theorem 5.
the equilibrium point in this special case can be given in

closed form (éee ppe 37=39 of [10]).

4, The group equilibrium problem

In this paragraph we will discuss the generalized version

of the classical oligopoly game r having the srategy sets

X = [O, Lkl] x [0, Lkzjrx. ees X [0, Lkik] @€ k= n) (25)

and pay=off functions

ik n i£
?k:(él""’zn) = Ezrvxki £ E:j Z:Txfj - K (Ek)s (26)
i=1 2=1 j=1

where for k=l;2,.6eyn1 X, = {X vew 9Ky s . This game
12s0een s T = (Fgseees ey ) €

can occur when the players of the classical oligopoly game

form disjoint groups and they tend to the optimal income of

the group., If the number of members in group k is equal %o i?,
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and the capacity limit of member 1 of group k is given by
Lki’ then the strategy set of group k is the set Xk and the
income of group k is the sum of the individual incomes of its

members, given by the function (26). 5

k
For k=l,2,ec0sn and 8y € 10, > Iki congider the

i=1
problem
O ‘-é Xkl g I-ki (i=1,2’¢.l’ik)
1y
.. = 8
ki k
iml (27)

K(Ek)‘ﬁ"} mine

function K is continuous then problem (27) has an optimal
solution, Let the optimal objective function value be denoted
by @k[hk), Some properties of the functions ka are given

in the following lemma.,

Lemmg 10, If K is continuous, convex and strictly
increaging in the components of ) then th is continuous,

convex and strictly increasing in Syce

Proof, See Lemmas 2,3,4 of the paper [10], n

Remark, Obgserve that the game properties were assumed
in the main theorems of the previous section which are now

stated in this lemma.

Let us now congider the classical oligopoly game r with

gets of strategies



XLC = O, Y I‘ki (k=l’2,a..gn) (28)
o i=l
and pay~off functions
n \
~
Qk(sl,“.,snj = Sk f(ﬁz: S%) - Ok(sk\o (29)
=1

The connection between the generalized game (25), (26) and
the classical oligopoly game (28), (29) is shown in the

following theorem,

Theorem 6, Agsume that K is continuous for k=1,24600300

a/ Iet Eﬂ = (éi"“’g) (-}E?; = (x]!:ls...,xiik)) be an
L

equilibrium point of [, and let s? = x?i « Then
=

(éf,...,sg‘) is an equilibrium point of [ and for k=1,2,.e.,n

(xﬁi,...,xzik) is an optimal solution of problem (27) with

b/ Iet (s¥,...,8%) be an equilibrium point of [  and

let 5: = (i;l,...,xﬁik‘) be an optimal solution of problem

(27) with 8, = sg + Then (;c_?f,...,g) gives an equilibrium

point of game " o
Proof, See Lemma 1, of paper [lQ]. B

Remark, The group equilibrium problem is not a real
generalization of the classical oligopoly game, since it can

be reduced to the clasgical case,

Finally let as assume that the functions f and Kk are



- 3] -

linear, Let

f(s) = As + B

i
K

Ke (&) = Zl-a'ki Eyei T By o
i=

then the solution of the optimization problem (27] is a
piece=wise linear function <3k o In this case the reduced game

can be solved eagily as it is shown in [lQ], PPe 43=44,

»

5. Multiproduct cligopoly game

In this paragraph we will consider the game having the

gets of gstrategies

= [0 53] 5 ven x [0, 3] 20)

and pay=off functions

M / n
“ek(aliﬂtosén) = lektm)fm (Zx‘a(l) geeey Z‘X_gM)) - Kk(%)’ (31)

mere 5, = (x,0nxM), B(8) = 5o R(BHSE

D (£,) = [0, Z Ién] X eee X [0, iLéM}], R(fm)C:Rl for
g=1

¢=1
k=1,2,600e,0 and m=l,2,s0,Ms This game can come up if the
factories manufacture different products and sell them on the

same market, Let M be the number of products, and let xﬁm) R

L2

from product m, If fm donotes the unit price of product m, than

be the production level and capacity limit of factory k

it is assumed that fm is & function of the total production

levels of the different products. The function Kk is the



SI0ALYT LN GOS8 anc Using ine above terminclogy the ilncome
os facuory k .s given vy function (31).
interpretation can be given to the other applications

olmil
showa in the section dealing with the classical oligopoly game

erent gualities of water and waste=water have to be

Hy

out dif
+
"]

.

introduced,
e Tollowing result is basic in the theory of multiproduc

econom.es, and it is a generalization of part ¢/ in the proof

of Theorem 4.

A

be g vector=vector function such that
’

Lemma 11, Let g
15(g\ is a convex set in the nonnegative orthant of R

?»(g)C: Rm. Assume that the components of g are concave and
be the Jacobian matrix

-
Y

continuously differentiable. Let
of g,If d (5) + d (5\T is nonnegative semidefinite for arbitrary

x € 9(g), then the function
T
h(z) = z” g(&)

ig concave,
Let / denote the gradient operation, Then simple

Proof,
calculations show that

In(z) = &) + x° I(

Since the components of g are concave, we have
(2,1 €8 (8) » (33)

(32)

x).

£ J&) - &)

&(X) - &(%)
implies

and the condition given for the Jacobian J



vrze-o {de - @ o -
. (34)
- (x- 0" JEE - 5)-

The Inequalities (33),(34) and y > 0 imply
e - a@) Cr @ - By £ E dE)(L - 2D
consequently
o T - T T
e - E el £laE) 2 d@] (L)
which and equation (32) give the inequality
n(g) - n(x) € VhE)L =~ X) 2

Thug function L is concave,

As a corollary tc this general result we can prove the

main result of this sec*’n,

Theorem 7, L€t

£= (fl,...,fm), and let d Doe tae
Jacoblian of f, Assume that functions f and K, (l‘ﬁ-k < n) are
continuous, the components of f are continuously differentliabple
and concave, Kk is convex and for arbitrary g € & (f) the

matrix J(g) + g(gyT i8 nonnegative semidefinite., Then the

game has at least one equilibrium point.

Proof, Since Xk is a closed, convex, bounded subset of

RM, ¥, is continuous and lemma 11, implies that ‘*k is

concave in X

the game satisfies all conditions of the
Nikaido=Isoda theorem, Thus the game has at least one

equilibrium point. [ ]
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Remark, The theorem does not give numerical methods for
the determination of the equilibrium point, But in the linear
case a very efficient algorithm can be constructed which is a
generalization of the method of I, latas given for the one=

=product case,

Let us assume that

1 (M N, (m A,
Kk\Xk( );..-,Xlt l))= L A‘}im) X*_S'm) + B]:C (kzl,c,.“’n)’
m=1
M
(e s ®) - T 2 Ly (g
m=1

b

i

n
where s(m = Zx.ém). Let us introduce the
k=1
n ¥
. : C-my o N e (m) _ mj\™
following notations: (=) 2__ é y A= (a& ) L ,m=1
k=1

Finally let us assume that 4 + é&T is nonnegative semidefinite.
Under the above conditions the game has at least one equilibrium
point, and since Ufk is concave in x., a vector

J_cﬁ = (;?f,...,g:) isg an equilibrium point of the game if and

only if
( < 0 for xf{*m)* = 0
3%, (" ,
k@ (rr)l) > 0 for x}%mm = L)gm) W k,m) (35)
X
k

= 0 for O <x1§m)x< Llim) "

where )_{_;? = kXél)ﬁycoo,Xéth) (k=l;2gooovn). et



then by calculating the

nv
-

A)
w2 il

SN
Z. /

£ A R

=
&
“

partial derivatives of

M)
xé 2 0
1P M) N 28
otherwise
. ~) ()
il XL < Ly
otherwise,

*k we can

easily verify that the conditions (35) are equivalent to the

set of equations (see [10] pp.

=1y2y 000, ;

g (™

.

"[\,]H

K=l,2,'.‘,ri [}

46=47)

(#)

RN

-l

Y o x

m.....

where

The above system can vbe written in a simpler form if we

for

introduce
£=
§=
E:
.Z_=

the following notations:

G

’ooagxn s0s00 9k

(1) LNH)T

- T
1 M A (L M
(A{)’ooop A-‘-E ),ooo’ AI& )’.‘..’AI(I ))

et (M (1 (
(Vl ],OOO’ V:;: ),ooo, Vl;),oc'g YI;M))
- , T
1 M I M
(]E)’OOO’ Zl( l,coo’ Zl’i ),-qo, ZlEl ))
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T
(1 M M
w=(w b v wi L, Wi, W)
1 i ) M)y "
i= (s 1 i, 1)

o
1

T
(Dpoeees Byseoes Byseees Dy)
Furthermore let g denote the Mn x Mn matrix

/o A i B
/ 4 eee I / Ias \

_.____
f
!

":I. - <
—

-
e

3

fip>ees
L]

then the relations (36}, (37), (38) have the form

PX+b=a=-v+

j

= 9

Z + W= 4 (39)

Thus we have proven the following result,

® . Cm s ‘ N
lemma 12, A vector x is an equilibrium point of the

linear oligopoly game with nomnegative definite matrix é + éT

if and only if there exist vectors 1?, H, g# such that

I=

s o : & * %
conditions (39) are satisfied with x = %X, ¥ =V , W =W

and z = gﬁ .

In a further special case the uniqueness of The equilibrium

point is assured, as it is shown in the following theorem,

Theorem 8, Assume that matrix A is symmetric, negative

definite, Then the game has a unique equilibrium point,

Proof, ILet us consider the quadratic programming problem



e
T

i~
N
f

(40)

£

rojr
S
o
+
f""‘"\
o
]
o
™
:
[

F.rst we prove that problem (40) is a strictlly convex

programming problem, It is sufficient to prove that wmatrix P

o
. . N . - . ptThgl )
is negative definites L€l U = (Ryseessld ) € R, where
I "
% € B for k=l,2,eee,n. Then
ol rn o
- m : — i
w P u = E U, u, + N vy A u. =
k=1 i=1 =1
I /' n N m I
m - i \
= E S £ W A E ‘
k-=l \\ i=1 J:l

for u# 0, If 4 1ig symmetric, then obviously P is aisc

gymmetric,

llext we observe that conditicns (39) without the equation
v' 2z =0 are the Kuhn-Tucker conditions of the quadratic
programming problem [see G, Hadley [3]), and since it is
convex, the Kuhn-Tucker conditions are necessary and sufficlent
conditions for the optimality. The fact that the matrix I 1is
negative definite implies that prodvlem (40) nas a unique
solution, and since the game has an equilibrium point whicn
must satisfy system (39) we conclude that the unique solution
of (40) gives the unique solution of (39), which is the unique

equilibrium point of the game, .ﬂ

Remark, The numerical solution of problem (40) can be

obtained by standard methods (see G, Hadley [3]}.
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Finally we remark that the statements of Lemma 12, and
Theorem 3, can pe extended for the multiproduct group equilibrium

proolem, but the details are not discussed here,
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