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l. General results

.~ mathematical game is a set r = (n; Xl' X2 ' ••• '--n;

f l' '12' ••• , 'fn)' where Il is a positive integer, Xl' ::-:2"" ,Xn
are arbi trary sets 8..'1.d the ::unct:"OTlE 'tk (l::::" =. n) are such

that 0 Cf k) = ~ x X2 x ••• x :<n' K ( ~ k) C- Rl • Here n o c

ca11ed the number of players, the sets ~, are the strategy..
sets and trie functions '1'y. are the pay-off functions. ;,ssuming

that the first player chooses the strategy xl t Xl ' the

second player chooses the strategy x 2 Q X2 ' etc., than the

va1ue ci' k (xl' x 2 , ••• , X n ) is considered to be the income

of player k (k = 1,2, ••• ,n). In the special case of

n

~ f. = O the game is ca11eè a zero SUffi n-person
. l l.l.=

r;ame.

Definition 1. li vector ;eH = (x~, ••• ,~) is a Nash-

-equilibrium point of the game r i f, --

(k = 1,2, ••• ,n);

bi far k = 1,2, ••• ,n ana arbi trary

••• , xk ' ..., (1)

Remark. The equilibrium strateby is optimal :or éhe

player k assuming that the other playern choose the correspondiné
components of the equiliberiUffi point.

Example l. ~et n=2,

"2 = ~ l t Z, _•• , "l..) l .
l _ !
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In this special case the game r is called a two-person

finite game. Let us introduce the following notations:

If l (i,j) = aij

<t2 l i, j ) = bij (i= l, 2, ••• , ml ; j=1,2'···';;:).2)'

Observe that A and B ar€ m1 x m2 matrices. The inequalities

(l) imply that a pair (io' jo) is an eyuilibrium point if

end only ii

(j =1,2, •• , m2 )

(i=1,2, ••• ,mi)-

In other words, the element is maximal in ~ ts colu:::.

(in matrix

row (in matrix

and

a ..
~oJo

the eleme:1t b. J' is maxir::ral i.n i ts
~o o

Froro this simple observation we can

easily verify that the game determined by matrices

has no equilibrium point; the eame with matrices

(: :) = ( :

O )A = , B

O

has a unique equilibrium point (l, l ) ; and any pair (:',j) Q-'

the game given by matrices

~ "C :), =(

l l ).3

l l

is an equilibrium point.
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The computation of the equilibrium points for finite

games is an easy job since a finite number of inequalities

has to be c~ecked.

Example 2. 1et n=2,

Xl
,

~

0 1 O T 11= 1. 2fl I :5.1 R ::il .::.. 1
:5.1 =, = -

m T
l}X2 = {:5.2 l :5.2 ~ H 2

:5.2 :> O 1. 2f2 =,
=

,

where Q is the zero vector, the vector l has unit componencs,

A and B are ml x

is called a bimatrix

m2 real matricea. The bame defined aJov~

game. In the special case 01'

the game is called a matI'ix game. It is known that the

equilibrium problem of matrix games is equj.valent ,o ,ne

solution of linear programming problems and tue equili.Jriur:

pI'obJ.em of bimatrix games can be solved by the solution 01'

quadratic pr·ogramming problema. The details will be discusse'i

later. Note that the bimatrix games are generalizations,

extensions of finite two-person games, since the strategie"

of the player-s are the choices of distributions defined on

the seta {1,2, ••• ,ml l and {1,2, ••• ,m21 instead of the choices

of one-one element from each set. The pay-off of the ~enera~~~eG

game is the expectation of the pay-off obtained in the fini ';E,

game with respect to the distribution chosen by eacL player.

Example J. I.et us consider the following n-person game:
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(k=1.2, •••• n)

• • •
(l) (2\

x. x. • ••
~l ~2

.i,
'L'DJ!:· l0k ~ ,. ~s e. rea

real parameters, ané

where ~~ is an {k

vector, the numbers

x mk real matrix,

a ~k) . are given
~l···~n

, lkl (k))for k=1,2, ••• ,n , xk = ~xl , ••• , Xffi
k

•

a generalized polyhedral game. To simplify

'1his game is ca11~~

our notations let

m
n

... L
i =1n

and

• • •
(k-l)x .
~k-l

(k+1)
Xi •••

k+1

then

where ~(~) is independent of xk •

In the specia1 case of
,

=( ~ ì- I

~ = lT b
k

,T
\ -1 /- L

(Where ~

the vector

is the ~ dimensional unit matrix,

o is the zero vec.or, the vector 1 has unit
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components) we bave

x .:::. O'-k:::-'

and the game is called the mixed extension of finite n-person

games. Observe tbat for =2 we have the bimatrix games with

since

and

and
mI m2

L'L
il=l i 2=1

.. xT B x-l ::: -2 •

I1rst we wil1 show the connection between certain mathema-

tical programming problema and two-person zero sum games.

Let UB consider the mathematical progrBuuning problem

~ '- X

g (~)~Q (2)

f(~) ~ max ,

where X is an arbitrary subset of Rn /it may be discrete/,

~ (iS.)C R
n

, "'-~)C R
m

, 13 (f) C Ifl , Jt (i) C. R
I

• Let

R: :::{g I :!ERm
, -~~ o},

and Iet UB consider the two-person zero sum game

r = (2 ; X • ~ ; l', - F),
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where

Lemma l. Ii (x!!, u!! ~ is an equilibrium point of the

game r , than x!! is an optimal solution to the programming

problem (2).

The inequalities (l) imply that if (xH, uH) is

equilibrium point, than

f(!!!) + uHT g:(X;i;);- f C~) + uHT g(!)

f(x!!) + uHT g:~H) ~ f(xH) + !!T g(~)

(Jf .! E x) (4)

C'II ':d € R~). (5 )

First we observe that g(xH) ~ O • Let us assume that a

component gi (xH) < O, then taking the i th component of !!

aufficiently large, the inequality (5) will not hold. Let

':d =Q, then inequality (5) implies u!!T g(~) ;; O • But

u· ~ Q, g(ti) ~ O, consequently uHT g(~) ~ O. Thus

uHT g(~) = O •

Since x· ~ X , g:(!H) ~ Q , the vector xH is a feasible

solution of the problem (2). We can easily prove that x· is

an optimal solution. Let .! be any feaaible solution of the

problem l2) • Then inequali ty (4) implies

thus !~ is an optimal solution. •
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Remaxk. The opposi te statement is not true in generalo

The Kubn-Tucker theory gives sufficent conditions, for an

arbitrary optimal solution of the problem (2) to be obtainable

fram an equilibrium point of the game r .
Newt we will prove that the equilibrium problem of n-person

general games is equivalent to the fixed-point prablem of a

certain point-to-set mapping. Let U6 consider the n-person

game in a more generalized form: r =(n ; Xl' X2 , ••• , Xn , :: ,

-t'l' f 2 , ••• , 'fn)' where n is the number of players; Xl' X2 , ••• ,Xn
isx X...... x ••• x Xc. nare the strategy sets of the players, X C:s.

the simultaneous strategy sst, the functions fl'~2,···,fn,
are the pay-off functions such that 9) ('t\) = X , R- ('-fk)C R-'-

(k=1,2, ••• ,n). Bere we assume that the players can not choose

their stratebies independently of each other because o:

circumstances independent of the players Ifor instance in

production games it is inpossible all players to have ~~imal

production because of the bounded quantity of row materials/,

a.YJ.d in the concr'ete realizations of the game only the elements

of X can appear as strategy vectors.

point of the game r if

Defini tion 2. ?_ vector = (x~, ••• ,~) is an equilibrium

al x" ~ X ;

bi for k=1,2, ••• ,n for arbitrary (X~, ..• , xk ' ••• , x:)e. ::,
f k (x~, ••• , xk' ••• , Y~)-; fk(x~, ••• ,~, ••• ,x~). (6)

Let us consider the following function,
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wh6::e for k;;l, ~?, ... ,n
(

J'~k'···tXn) <i- y I.et• ( xl ' ••• , .> • us

sa.y that ohe pa.i.l' ( ;:s, :L) i8 tea.sible if x l' v and for"- "

k"1,2, ••• ,n, (X1""'Yk"'.'Xn ) e:x.. T"nen function <} )8

ciefined for ax-t)i trary fp,asible paira (;:s, .y.).

Lemma 2. 'fue vec "';;or x!f '" (x~, ••• ,x: ) ia an equj.librium

poi.nt 01' tì18 gaJDl:' f' if and only il' for ar'bi tr·a:.."'Y ÌeasibJ e

poìnt. T'nen 1'01' a:cbi trar'Y k and

Preci' • Let U8 assume th.at ia an equ.ilii,l'iuo

inequa.li ty holds

Let us add these inequalities l'or k=1,2, ••• ,n and let

v - (v Y \ thell we ~~ve... - \"1.···. n)' uc:.

/ 'li _ "..
\.xl'·~"'ykf"'J· ~,

8.:b1 traI'Y feaElible pair

be fixed f~d letLei k

bi Let ua noVi asSl-llJle that

')(,v.L0usly the pai:r' I )f:, )\ tl.: ,'y'
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Since

L 'fi(x
il

) + fk(x~, ••• ,x~, ••• ,x:)
i;lk

and

4>(X!i,;I) = L ~i (x!i) + '1\ (~, ••• ,xk'·"'X:)
i"k

tbe inequality l7) implie8 that

tbus x* i8 an equilibrium point. ..
By using the above notationa let us introduce the following

point-to-set mapping

ep (2n = {1\ (~, 1) i8 feasible and ~(~, 1) = max {(~, ;Il ;(~ , :L)

i8 feasible 1J •

!~ a simple consequence of Lemma 2. we have the following important

reElUlt.

Lemma 3. A vector x* i8 an equilibrium point of tbe game

il and only if xH ~ <P (Xii)

mappillg <P /.

/i.e. xii is a fixed point of the

The most important existence theorem for n-peraon gamea can

be proven by using the Kakutani fixed point theorem for shewing

that the mapping ep has at least one fixed point. Thia theorem

is called Nikaido-Iaoda theorem and it is the following:

Theorem l. Assume that

a/ X is a bounded, closed and convex subset of a finite

dimension Eucledian space;
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bi for k=l, 2, ••••n the functions ~k are continuoua

and for fixed

Under theae asaumptiona the game haa at least one equilibrium point.

Proof. See J. B. Roaen [8 J • •
Remark. If we assume that the

Example 4.1. For the

concave in

general ia

Xk, then the

not true laee

1.miqueneaa

functions f k are strictly

of the eouilibrium point in

uniqueneaa of the

equilibrium point of n-peraon games J.B. Rosen [8] gave sufficient

conditions, but the assumptions of the next paragrapha are

independent of the condi tions introduced by J .B. Rosen.

2. The solution oi a special class of concave games

Let UB assume that for k:l.2, ••• . n

~ = {~I
~

~( ~) .Q}.~ €. R • ~=

where
~ -tkal ~ (~) = R .:R. (~) C. R ,the components of ~ are

concave, continuoUBly differentiable functions;

bi Xk is bounded, and in each point of Xk the Kuhn-Tucker

regularity condition holds laee G. Hadley (JJJ ;

cl f k is continuoUB J concave in !K for fixed ~l' ••• ,

•••• xk_l ' !K+l' ••••!n and continuoUBly differentiable with

respect to !K'

lemma Lo The game r = (n; Xl"'" Xh
at least one equilibrium point.
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Preof. It ia obvioua that all condi tiona of the Nikaido-

-Iaoda theorem are aatiafied.

Let kc l.2••••• n and for fixed atrategy vector

x'l c (~. ~•••••X:) conaider the mathematical programming

problem

'f'k (x~ ••••• ~ • •••• ~) ~ max •

•

(8)

Lemma 5. A vec tor xJ! = ( x~•••••

point ii end only ii for k=1.2 ••••• n

of the problem (8) •

ia an equilibrium

la an optimal aolution

Frooi. al If .~ ia a feasible solution. then the constraint

impliea that ~ ~ ~ • thua xH = (!~ ....•~) is a strategy vector.

If ~ ia an optimal solution. then for any feasible solution

ii ii " ii ii)
~ ~ ~. lf k (xl··... ~..... !n) ~ 'f k (~l''''' xk • .. •• 2Sn •

Thua Xii ia an equilibrium point.

bi If ~J! is an equilibrium point. then inequalities

(l) imply that the components x~ are optimal solutioDSOf the

problema (8) • •

Lemma 6. A vector ~§ = (x~..... ~) ia

if and only if for k=1.2 •••••n there e%ists

such that

an equilibrium point

a vector ~ ~ R~C

~~ Q

\Jk f k (Xii) + ~ \7 k ~ (~) = OT-
~ (~) .:.. O (9)=

~ ~ (~) .. O
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Iwhere \) k f k is the gradient vector of f k wi th respect

to ~ and 'V k ~ is the Jacobian rnatrix of hk/.

Proof. Under the assumptions given above, prob1em (8) is a

concave programming prob1em. It ia known that the Kuhn-'fucker

equations and inequa1ities (9) are sufficient and necesaary

conditions for the optimality of a vector· x~ (k=1,2, ••• ,n) laee

Had1ey ['3 J I . •

To the sake of simple notations let

It'k (~, ~) = Vkfk(!) + ~ \}k ~ (xk ),

Now we can prove OUI main theorem.

Theorem 2. A vector xH = (x~, ••• , ~) is an equi1ibrium

point if and on1y if there exists a vector ':1f! = (u~, •.. ,u~ ) such

that (~*, uH) is an optimal solution of the mathematical prof­

ramming prob1em

u ..:.. O
-k = -

(~, Uk ) =

~ (~k)

'l'0-

.:::. O= - /

(k=1,2, ••• ,n)
(lO)

n

L T hk (~) Bin.uk -7

k=l

P"'oof. al Let xH be an equi1ibrium point lLemma 4.

imp1ies that there exists at least one equilibrium point.1 ~nen

th . t t uH (il!: ,. )ere eXlS s a vec or = ':1l""'':1n such that the equations

and inequalities are satisfied for uk = ~ , thus the value of

the objective function of the programming prob1em (lo) is zero

for ~y. =~ • For arbi trary feasible solution (~, ~)
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of (lo) the objective function value is nonneeative, thus

(!/, :l') is an optimal solution.

bi Let (~ft, ~~) be an optimal solution oi (lo).

Jince it is a feasible solution, each term of the objective

function is nonnegative, conseqently the value of the objective

function is nonneòative. DUt for the equilibrium point of the

Game Iwhich existsl the objective function has zero value,

thereìoI'e the optimali t~, of (xH
, uH

) implies that the obj ec tive

function at the point (~H, ~H) must have zero value. ~ince all

terme are nonnegative in the objective function, alI terme are

equal to zero, Thus the equations and inequalities (9) are valid

for x = x* , ~ = u* , consequently Lemma 6. implies tbat

is an equilibrium point, •
Remark 1. l'roblem (lo) is a rnathematical prof;ramminc

problem which c~~ be solveù by numerical methods le.g, cuttinG

pIane or ~radient type algorithms, see G, Hadley [3]/.

-
problem (lo) was discovered by :~, J. Canon [2J •

nemark 2, In the special case of n=2 and '1'2 = - f.,
~

~lnally we willshaw well-known algorithms can be deriveè

from tne above generaI nethou as special cases.

General polyhedral bames

Using the notations of '::;xample J. we bave

T
= ak l;')

- .:..~. ,
-"l'.
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aince

l.fk (~ii)
T

= ~ (~) ~

~ \~l = ~ - ~ xk •

Thua problem (lo) has the form:

~:; O

)
T T, O~

~ (~ - ~ ~ =

Qk - h: xk .; O

n

L u~ (~ - h ~) ~ min.
k=l

(k=1,2, ••• ,n)

l 11)

let us observe that the second constraint implies that

(
T T.

ak :lS ) = uk ~k '

and by using the fact that f k (~l = ak (~) T ~ we can wri te

problem (11) in a mox€ conveDient foxm:

(k=1,2, ••• ,n)

n

L (u~ ~ - 'fk (~l) ---+ min.
k=l

~s a special case let n=2. Since

(12 )

where ~ =

!!:2 l ~) =

3 = ( a~~~2)

problem (12) can be xewri tten as
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~l
.:. O
=

~2
~ O
=

T .~l :"
~2 -!;, - u- h = 0-

-l
'il '" 'p

xi " - 112 =~2
v

E-l - iil ~l
;:, o
=

b - ~2
~ ;:, o-2 ::2 =

2
;il

~i (i; "" g) ~2 -4 min ,

which is a quaùratic programming problem with linear constraints.

1et 1.1S observe that the UIL1{nown vector (~l' ~2' ~l' ~2) ie

dimensionalo In a further special case when

g = - g Izero-sum casei, problem (13) is a linear programming

prob1em, which can be so1ved by the simp1ex method.

l~xed extension of finite games

is we have seen in bxample 3.in our case
I ~

\ O

Ir=
Iht lT , bk = 1

lT -1 I
1et us write the vectors uk in block form correaponè.ing

tO the special block forrr. of
~

and bk , then we nave

'v-k

1l =-k



where vk ~ R~ ,

notationa prob1em

c(k

(12)
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and (!J k are sca1ers. Using these specia1

can be written in the forro

v ::::. O
-k = -

::,. O

.::. O
(k=1,2, ••• ,n)

(14 )

m
1. ~ l
~=

n

L (o(k - flJ k - f k (~) ) -- min.
k=l \

Let ua observe that the nonnegative vector ~ appears on1y in

the fourth constrairit and we can introduce the new variab1e

'tk = o( k - ~k • which is not necessari1y nonnegative. Then we

get by multip1ying the objective function by -l the fo11owinr

prob1em:

~ unT
~ t"k l!'

xk ~ O
'l'

1- x, = l
- -K

( k= l, 2, ••• , n)

(15)

n

L (fk (~) - 'f k ) ~ max
~=1

which ia the method of H. 1iills [6].

Bimatrix p;ames

Fr1)m the previoua case the bimatrix games can be obtained

by chooaing n=2. Simple calculations show that
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T= B 2S1 '

thus problem (15) can be Viri tten as

A x2 ~ 'C'l l

"'B~

2S1 ~ \"'2 1

2S1 .:::. O
=

2S2 ~ O (16)

~I

1- 2S1 = l

lT x = 1-2

which is a quadratic programming problern wi th linear constraints

and it was discove:red by O.L. L:angasarian and l-i. Stone (5].

Por matrix garues J?!! - li ' thus problem (16) is a linear

prograrmning prob1em, which can be> separated wi th respect to the

variables (2S1' 'f 2) and (X2 ' '("1)' and so problem (16) cari be

reduced for two linear programmin8 problema

{; 2S2 -& 'C'l l

2S2 :::. O (17)

lT x = l- -2

'('l -7 min

and
T

'\2 l- A 2fl ..:-
=

2S1 .:::. O CIS)=
l T

2S1 = l

X"2 ~ min
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3. The classical oligopolY game

In this section we will discuss a special economic game

with seta of strategies

~ = [o, ~J (~> O, k=1,2, ••• ,n) (19 )

and pay-off functiona

'fk (xl'···'~ ) = ~ f ( t xi " - ~ (~),
~=l J

(20)

whel'e the functions f and ~ muat have the properties:
n

Slf) = [O, LJ, whel'e L = L Li ; 51j(~) = [o, ~];
i=l

1\ (f) C Hl and]t(~) C Hl • The game defined by the sets of

atl'ategies (19) and pay-off functions (20 is called the

classical oligopolY game.

Before diacussing the equilibrium problem of this game we

ahbW how the game appears in seme applications.

Application l. Asaume that n factories manufacture the

aame product and they sell i t on the same market. Let f be the

unit price of the product being a function of the total production

level, and let ~ be the coat function of the manufacturer k.

Then ~ ia the production bound for manufécturer k and

f k (xl'''.'xn ) is its netto income assuming that xi is the

production level of the manufacturer i for i=I,2, ••• ,n.

Application 2. Assume that a multipur'pose water supply

syatem haa to be designed. Let the water users denoted by k

(k=l, 2, ••• ,n) and let the water quanti ty given to user k be
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denoted by x k• If the capacity bounde of the usere are denoted

by ~, then obvious1y X k e [o, ~J for k=1,2, ••• ,n. ~t I
n

be the investment cost being a function of L ~, 1et ~(~),

k=l

Vk(~) and wk(~) be the production cost, income and the economie

1088 of the water shortage /penalty e.t.c./ of user' k,

respective1y. ~t us assume, that the total investment cost i~

devided by the users in the rate of the water quantity used by

the water users. Thus the tota1 ìncorne of user k can be determined

by the function

(21)

By introduceing the notations

i=l

function <21~ has immediate1y form (20).

App1ication 3. ~t us now assume that n factories are

on the bank of a r'iver and they send a certain quanti ty of

waste-water to the river. It is also assumed that the total

penalty paid by the factories is a function of the total waste­

-water quanti ty sent to the river and i t is devided among the

factories proportional1y to the waste-water quantity.sentto the

river' by the different factories. I.et ~ be the total waste-
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-water quantity produced by factory k, let x k be the waste-water

quantity sent to the river by factory k. Then the total "income"

of factory k can be given by the formula

( 22)

where Pis the penalty function, Ck is the cleaning cost of

factory k. let

l
n

L Xi
i=l

then the function (22) immidiately has the form of (20).

First we shaw the.t the equilibrium problem of the classical

oligopoly game is equivalent to a fixed point problem of a one

dimension point-to-set mapping. It will be much more convenient

than the application of the fixed point problem of lemma 1, since

the latter is an n-dimensionaI problem.

let

~k(s, xk ' t k ) = t k f(S - ~ + t k ) - Y"k(tk ).
for k=I,2, •• ,n, s ~ [O, q, ~ ~ CO, ~] and t k ~ [o, ~] ,
where t'k = min {~' L - s + xkl' Since rk :; 0, tÌle interval

for t k can not be empty. F6r k=I,2, •• ,n; s ~ [O, LJ; xk ~ [O, ~1

let
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and for k=1.2 •••• n ; s ~ [O. 1] let

lemma 7. A vector !:,if. = (x~.....~) is an equilibrium point

of the classical oligopoly game if and onl~ if x; ~ ~ (SH)
n

(k=1.2 ••••• n). where s* = 2: x: .
k=l

Proof. The definition of the equilibrium point implies

that a strategy vector ;;,* = (x~.....~) is an equilibriuU' point

if and only if

for k=1.2 •••• ,n and t k € [O, ~J. IIt is easy to observe that
n

for SII r~ li"k = ~I L'lequali ty (23) is equivalent=
i=l

to the fact that xl{ e: Tk (s*, ~) , that is xl{ ~ ~ (sft). •k k

let us finally introduce the following one dimensionaI

point-to-set mapping:
n

Ils) = {u lu = LXi' Xi ~Iils)} (s € [O. 1J). (24)
i=l

Lemma 7. and definition (24) imply the following important result.

•

Th 3 A t X* (!Il j()" "l" b "eorem. vec or = x1 •••••xn ~s an eq~ ~ r~um

classical oliaopoly game if and only if forpoint of the
n

li L il:
S = ~

i=l
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Remark. The solution of the ~ame has two steps:

~tep l: the solution of the one dimensionaI i'ixeci point

problem SH E X(SH);

Step 2: the cietermination o~' sets Xl( (SH) and the computation

of the vectors xH = (x~, ••• ,x~) such that

(k= l, 2 , ••• ,n) and

n
il: L x*s = 1{ •

k=l

In the followin6 parts of tllis section we will assume that

the conditions given below are satisfied.

l. There exists a constant ~ >° such that

al f (s) = ° for s ::. ~ .
= '

bi f is continuous, concave and strictly decreasing

in the interval [O, n·
2. For k=l, 2, ••• , n function 1'1: is continuous, convex

and strictly increasing in the interval [O, ~J.

'Iheorem 4. Under the above conditions the game has ai

least one equilibrium point.

Proof. The proof consists of several steps.

al First we prove

equilibrium point, then

that if x* = (x~'''''~) is an
n

L xt: ~ t . Let us suppose that
k=l

n

L H >ç Then there are positive xH and xk such thatxk • k
Ic=l

O <Xk < H and L ~ + Xk >( This impliesXk •
i"k
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(
ili li ii)xl' •• , t Xk , ••• ,~ ' which is a contraàiction to inequality

bi I.et

x = {2S, I2S, = (xl'···' x n ) ,

n

L Xk
.:::
=

:c= l

le=1,2, ••• , n } •

Next we prDve that any equilibrium point 2S,1i of the generalizeu

game r = (n; Xl' ••• '):n' X; fl' ... ,f n ) gives an equilibrium

point for the classical oligopoly game. Let x k ~ [O, ~].

If ( ii" ii li)r!'xl' ••• 'xk _ l , x k ' xlc+l' ••• '~ 'II!: ,C, then the equilibrium

property for same r Cives

'f k (~, ••• ,x~ ' ••• ,~ ) ~ \f' k (X~, ••• ,xk ' .. .,X~ ) ,
and if (x~, ... ,Xk ' ••• ,x~ ) f.:::, then

since

= O.f(E X~) - I1( (O) =

(
li li

xl' ••• , O, ••• ,xn

cl Next we prove tl~t ii function h is continuous, concave

and strictly decreasing in a nonnegative interval CA, B], tnen

the function xh(x) is concave in the same interval.

Let U8 first assume that h is twice continuously

differentiab le.

Then
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{Xh(Xl}' " xh'(x) -r n(x),

{xhlx)) " " 2h'(x) + xh"( x) < '-,
which implies the assertion.

lf h is continuous, tl,en let ['m (Ul"1,2, •• ) ue twice

continuously differenciable, concave, strictly decreasing

functiom such that lio b = Ìl.
IJ:

Let A ~ x <: y !f. D; 0(, (>J ~ G; .x _,o f" " l, then l'or :J],,1,2 •••

Jy the limi t relation rn _00> we obtain

(<xx + i?y)b ( o<x -r ,r>, y);;' o:,xh(xì + f/Jyh(y),

thus xh(x) is concave.

di The parts al and bi irnply that tlle classica~ oligopoly

game and thegeneralizedgarne r=(n; ;;l""'Xn , X; -f1, ••• ,f r,)

have the same equilibrium points. Under the assumptions of the

theorem X is a convex, closed. bounded subset of Rn • 'f k is

continuous and part cl implies that ~k is concave in xk •

Thus the conditions of the Nikaido-Isoda theorem are satisfied,

consequently the game has at least one equilibrium point. ..

no\;
Remark. 'fue uniqueness of the equili brium point iS'lassur ec.

in general as the followinc example sbO\l/s.

Example 4. Let n=2 ; "
,

= l ')
--'l -'-"2 ,~
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1,75 - 0,5s , if O_<::s~l<:;, -'

f (s) :: 2,5 - s,

o

if 1,5f;s&2,5

i.l s > 2,5

(x;;- O) •

•Ie will prove that ano arbi trary point of the set

gives an equilibrium point of the game.

Lét ? E [0,5 ; lJ oe fixed, ana let

\f!(x) :: xf(1,5 - x + x*) - I\(x)

It is easy to verify that

( k::l, 2, ).

and

'+" (x* - O) :: x~ ( - O, 5) "- l - O, 5 :: O, 5 (l - x~ ) ;- O ,

*' (xil
"' O) :: Xii ( -l) + l - 0,5

~= 0,5 - x .c O.

Part c/ implies that function Y is concave in v
"" ,

consequent1y from the inequalities qJ' (x~ - O) ~ O and

11'" (x~ + O) we can conclude that H is maximumpoint ofx a

the function 4J • Thus arbitrary xH € XIi is an equi1iorium point.

Next we discuss a numerical a1gorithm for findig the

equilibrium points of the classica1 01igopo1y game. Under the

assumptinns of Theorem 4. the following statements are true.

Lemma 8.

a/ For s e- [o, L] , ::\((8) :;'s not empty and is a closeci

interval ["\(s), 1\(s)J ' (k=:ì.,2, ••• ,n)
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b/ for O ~ a < s'!:. L the inequality I\(s') -<: ~(s)

holda for k=1,2, ••• ,n ;

c/ if f is differentiable at the point a, then

~ls) = 1\ (S)

d/ if f is differentiable in the inte:rval [O, :..] , then

~(s) is a continuous function of s.

Proof. Parta a/ and b/ can be proven by simple modifica-

tions of parta e/al and G/bl of the proof of Theorem l. in
,

paper (lOJ. The statements cl and d/ are proven :in the C/a,b,c

part of the proof of Theorem l. in paper [lOJ. •
Lemma 9. If :fH = (x~, •• " ~) and !J8f. = (x~,. •• ,zn- )

are equilibriuID pointsof the clasaical oligopoly game having

the properties given in Theorem 4., then

n n

L~=L~H3t·
k=l k=l n n

Preof. Assume that SH = 1." ~ < Siiii = L ~Oiii.. Then
k=l k=l

TI

sH = L x: :;
k=l

n n

~ L 1\ (sJi!!) ~ L x~ =
k=l k=l

which is a contradiction. •

Corollary. The point-to-set mapping X(a) has exactly one

fixed point, which can be computed by the usual bisection method

(see F; Szidarovszky, S.Yakowitz [12J).
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Theorem 5. Assume that the conditions of Theoreo 4. are

satisfied. Let s* be the unique fixed point of the mappin[

X(s). Then alI equilibrium points of the c1assical oligopo1;,'

èaIDe can be obtained by the solution of the system of 1ineaT

equations and inequa1ities:

,\(s*) ~ ~ ; 1\(s*)

n
'\'"' SiiL_ x k =

k=l

(k=1,2, ••• ,n)

preof. The statellient is a consequence of Lemma u. arill

lemma 9. •
Corollary. If in addition to the conditions of Theorem 4.

function f is differentiab1e on the interval [o, L], then tl~

equilibrium point is up~que.

Remark l. It is interesting to observe that the game is

not linear but the set of equi1ibrium points is a simplex.

Remark 2. The uniqueness of the equi1ibrium point depends

on the differentiabi1ity of a function and not on strict

concavity as i t is usual in the theory of nonlinear programming.

Special cases.

l. In case of t and ~ (l ~ k ~ n) being twice differentiab1e

the uniqueness was proved by O. Opi tz (7] without giving any

algorithm for finding i t.

2. Under the assumptions of O. Opitz, F. Szidarovszky OJJ
proved the existence and uniqueness of the equi1ibrium point
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and also gave an iterative algorithm for computing it.

3. If the cost functiona I~ are idenoical anQ the

conditiona of O.0pitz are satisfied, then E. Burger [lJ proved

the existence and uniqueness of the equilibrium point and also

gave an algorithm to compute it. Je remark that the algorithm

of Szidarovszky is a generalization of Burger's method.

4. If the functions f and Kt (k=1,2, ••• ,n) are linear,

then the existence and uniqueness was proved by li. Manas,[4] ,

who gave an algorithm which is independent of the method of

Szidarovszky. ~e remark that using the result of Theorem 5.

the equilibrium point in this special case can be given in

closed form (see pp. 31-39 of [lOJ).

~. The group eguilibrium problem

In this paragraph we will discuss the general~zed version

of the classical oligopoly game r having the srategy sets

and pay-off functions

••• (l f k.f. n) (25)

(26)

where for k=1,2, ••• ,n'!k = (Xkl' ••• 'Xkik) € ~ • This game

can occur when the players of the classical oligopoly game

form disjoint groups and they tend to the optimal income of

the group. If the number of members in group k is equal to i k ,
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and the capacity limit of member i of group k is given by

~i' then the strategy set of group k is the set ~ and the

income of group k is the suro of the individual incomes of its

members, given by the function (26), i

Far k=l, 2, .. "n and sk ~ ra, ?k, l'ki) consider the
l 1.=1

problem

o~ Xk ' ~ ~i (i=1,2"",ik ):l

i k

L~i = sk
(27)i=l

If function K is continuous then problem (27) has an optimal

solution, Let the optimal objective function value be denoted

by 9k (sk)' Some properties of the functions Qk are given

in the following lemma,

Lemma la, If K is continuo~t convex and strictly

increasing in the components of ~) then ~k is continuous,

convex and strictly increasing in sk'

Fraof, See Lemmas 2,),4 of the paper [la), •Remark, Observe that the aame properties were assuroed

in the main theorems of the previous section which are now

stated in this lemma,
-'

Let us now consider the classical oligopoly game r with

sete of strategies
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(k=1,2, ••• ,n) (28)

and pa,y-off functions

f'k(al,· .. ,an ) = ak f(i St) - ~(Sk)'
f,=l

(29)

•

The connection between the generalized game (25), (26) and

the claasical oligopoly game (28), (29) is ahoon in the

following theor'em.

-Theorem 6. Assume that ~ is continuous for k=1,2, ••• ,n.

a/ Iet x
H

= ( x~, ••• ,~) (~= (x~r'" ,X~ik)) be an

equilibrium point of r, and let s~ = i:: x~i • Then
i=l

(a~, ••• ,a:) is an equilibrium point of r and for k=1,2, ••• ,n

(~l, ••• ,x:i ) ia an optimal solution of problem (27) with
k

a s.1i.k = -l{

'"bi Let (a~, ••• ,s:) be an equilibrium point of r and

let ~ = (~l"" '~i ) be an optimal solution of problem
k

(27) with ak = s;. Then (!.~""'~) gives an equilibrium

point of game r .
Praof. See Lemma l. of papar [10].

Remark. The group equilibrium problem is not a real

generalization of the classical oligopoly game, since it can

be reduced to the classical case.

Pinally let as assume that the functions f and ~ are
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linear. Let

f(s\ = As + B

i k

\: (xk ) = L ~i Xki + bk '
i=l

then the solution of the optimization pr~blem (27) is a

piece-wise linear' function Qk • In this case the reduced game

can be solved easily as i t is shown in [lOJ, pp. 43-44.

5. Multiproduct oligopoly game

In this paragraph we will consider the game having the

sets of strategies

~ = [o, ~(l)J

end pa.y-off functions

x ••• x (3 0 )

(31)

where

for

k=1,2 •••• ,n and m=1.2, •• ,M. This game can come up if the

factoriea manufacture differ~nt producta and sell them on the

aame market. Let M be the number of products. and 1et x~m) ,

~) be the production level and capacity limit of factory k

from product m. If f m donotes the unit price of product m, than

it ia assumed that f m is a function of the total production

levels of the different products. The function y~ is tbe
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~~G ~3ing tne aOOVt ~erminology the incarne

(32)

..h fa." I.ory k ... '" c.L ven by function (31).

3imilar lnterprètation c~~ be given to the other applications

sh~l~ ~ the section àealing with the classical oligopoly game

but ìiffe=ent qualities of water and waste-water have to be

introduceL..

::-•.e :'ollc.wing ~sult is basic in the theory of mul tiproàuct

econo~es, acd it is a generalization of par~ cl in the proof

of Theorem 4.

lemma 11. Let E. be a vector'-vector function such that
rv:

b(E.) is a convex set in the nonnegative orthant of R
M

~l~lC: R • Assume that the components of g are concave and

continuously differentiable. Let g be the Jacobian matrix
'!'

of ~.If g (~) + g l~)- is nonnegative semidefinite for arbitrary

~ ~ .9 (~l, then the function

h(~) = ~T gl~)

is concave.

Proof. Let \J denote the gradient operation. Then simple

calculations show that

V h(~) = g ~)T + ~T g(~) •

Since the components of g are concave, we have

(33 )

and the condition given for the Jacobian J implies
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'"= (:L - ~). !1(~)(;;L - ~).

The :nequalities (33), (34) and ;;L" O impIy

conseque'1tly

wr~ch and equationD2l give the inequaIity

Thus function h is concave.

(34 )

•
As a corollary te this generaI r~sult we can prove the

main result of this sec H '1n.

'lheorem 7. :'et and Iet g òe t!le

Jacobian of 1. Assume that fune tions 1 and I\: (l :=:. k ~ !l) aI"e

continuous)the components of f are continuously differentiabIe

and concave,

matrix g(.§.)

~ is convex and for arbitrary ~ ~ )tr(f) tr.e
T

T g(~) is nonnegative semidefinite. Then the

game has at Ieast one equilibrium point.

Preof. Since ~ is a closed, convex, bounded subset of

RM, 'f k is continuous and Lemma 11. implies that -fk is

concave in xk ' the game satisfies alI conditions of the

Nikaido-Isoda theorem. Thus the game has at Ieast one

equilibrium point. ..
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Remark. The theorem does not give numerical methods for

the determination of the equilibrium point. But in the linear

case a very efficient algorithm can be constructed which is a

"generalization of the method of M. Manas given for the one-

-product case.

Let us assume that

'. ( (l) (M))I,.u. S ,,, •• ,8

M

L ~m) x~m) + B
k

m=l
N:

= La~m)
m=l

(k=1,2, ••• ,n),

1et us intr'Oduce the
n

where s(ml = [' x~m).

k=l

following notations: ~(m) =

Finally let us assume that

n

L~m)

k=l
A + A

T
- -- -

(
l.m)~M, fi. = al.. -l .

-,U. "" ,m-

is nonnegative semidefinite.

Under the above condi tions the game has at least one equilibrium

point, and since 'f'k is concave in ~k' a vector·

H (H ii)
!. = !l'···'!n
only if

is an equilibrium point of the game if and

~ O for (m) ft
= O

=
xk

Cl fk(~ii)
> O for lm)ii ~m) (~ k,m) (35)

él x Cm)
xk ==

k
= O for O < x~m)ft < ~m)

.here ii ( Uht (Mllt) ( k= l , 2 , ••• , n) • Let
~ = xk , ••• ,xk
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l,u l (;"-\ Wl ::> Owk = I{ - xk =
/ O if x'.)'- J C (36 )! = >lf) k

z, )
K \

I ~ u otherwise=
\...

(, .; ..;. )r) /' ~ (t')
= -~ ~(t)

,
k ---

tv,
K ::. O otherwise,=

then by calcula ting the partial derivatives of -f 1 we can
K

easily verify that the conditions (35) are equivalent to the

set of equations (see [10] pp. 46-47)

(37)

f or ,LA- =1,2, ••• ,M ; k=1,2, ••• ,n . where

n

s\.m) = L x~m).

k=l

The above system can be written in a simpler form if we

introduce the following notations:

'"( i l) \.M) Cl) lM))~
~ = x , ••• ,xl , •.• ,xn , •••• ,xn

~ = ( III (M) (l) (Ml)TAl , ••• , A.ì ' ••• t ATI , •••• , An

'"
(

\.l) CM} (l) (M)) ~
! = vI'···' vI'···' vn , ••• , vn

(38 )

(MI
z1 t···,

(l)
zn , ••• ,
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~ =( w?l,
t ',1) ll) (M) ) T... , Wl , ... , wn , ••• , Wn

l r-i ll
, •••

L[M) III L(M) )
T

.{, = , ... , Ln ', ••• ,
l ' n

o ( bl , ••• , brrp • •• , 11 , ••• , bM)
T=

Furthermore let à denote the Mn x Mn matrix

I A
,

AT,\

)
\••• n ,

I = •

)p • · ( •= + ,
• ·= • • •

AT
~ ••• A

then the re1ations (36), (37), (38) bave the forn:

à ~ + ~ - ~ - v + Z = O

z + W = ~

~? Z =:L
T

'!1. = v
T

z = O

~, :L, ~, w ~ O •

Thus we have proven the fo11owing resul"t.

(39)

Lemma 12. A vector x* is an equilibrium point of ti1e

if and only if there exist vector's

linear oligopoly game with nonnegative definite

* ii z*v , !. ,

matrix ;,. +

such "that

TA

condi tions (39) are satisfied wi th

and z = z* •

In a further special case "the uniqueness of the equilioriu.ll

point is assured, as it is shown in the following theorem.

Theorem 8. Assume tbat matrix ~ is symmetric, negative

definite. Then the game has a unique equilibrium poir.t.

Proof. Let us consider the quadratic :progr'amming prob1em
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o , x ~ .f.- =
-,

xT "'P ~ - ( iJ
,~

2;. ~ mar.
~ ~I •

(4 0 )

1::-rst 'Ile pr-ove thai: problem (40) is a stri::tl-:' :;onvex

programmìng problen:. li: is sufficient tO prove that n:atrix ~

1m.
is neGative definite. ~t ~ = (!lI' ••••11n) € R ,'Nhere

ier k=I.2 ••••• n. Then

~ r. "--
~

L T L '\ lil.
P A 1.;.~ At,; t,; = ~ !lk + U, =L.- -l -.v

k=l i=l j=l

n

L T A= 1:!k !lk
k=l

for 1.;. 1- Q. 1::' il. is symmetric, then obviously f is aiso

symmetric.

llext 'Ile observe that conditions (39) without che equation

v
T

z = O are the Kuhn-Tucker condi tions of che quadratic

programming problem (see G. Hadley [31). and since it is

convex. the Kuhn-Tucker condi tions ar'e necessary and sufficient

conditions for the optimality. The fact that the matrix

negative definì te implies that problem (40) nas a unique
= is

solution. and since the game has an equilibrium point whicn

must satisfy system D9) we conclude that the unique solution

of (40) gives the unique solution of (39). which is the unique

equilibrium point of the game.

Remark. The numerical solution of problem (40)

obtained by standard methods (see G. Hadley (31).

can iJe•
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Fina.l1y we remark that the statements of Lemma 12. and

Theorem 8. can be extended for the multiproduct group equi1ibrium

prob1em, but the detai1s ar'e not discussed here.
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