and 12, we also obtain:

THEOREM 15. - (The third normalization theorem for homotopies of functions between (n+1)-tuples). Let S, S_1, \ldots, S_n be a (n+1)-tuple of topological spaces, where S is a compact triangulable space, S_1, \ldots, S_n are closed triangulable subspaces, G, G_1, \ldots, G_n a (n+1)-tuple of finite directed graphs, C, C_1, \ldots, C_n and D, D_1, \ldots, D_n two finite cellular decompositions of S, S_1, \ldots, S_n and $e, f: S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$ $modeling functions pre-cellular w.r.t. <math>C, C_1, \ldots, C_n$ and D, D_1, \ldots, D_n respectively, which are o-homotopic. Then, from any finite cellular decomposition of the (n+1)-tuple $S \times \left[\frac{1}{3}, \frac{2}{3}\right], S_1 \times \left[\frac{1}{3}, \frac{2}{3}\right], \ldots, S_n \times \left[\frac{1}{3}, \frac{2}{3}\right], of$ suitable mesh, which induces on the bases decompositions finer than $<math>C, C_1, \ldots, C_n$ and D, D_1, \ldots, D_n , we obtain a finite cellular decomposition $\Gamma, \Gamma_1, \ldots, \Gamma_n$ of the (n+1)-tuple $S \times I, S_1 \times I, \ldots, S_n \times I$, and a homotopy between e and f, which is a pre-cellular function w.r.t. $\Gamma, \Gamma_1, \ldots, \Gamma_n$.

Since the *n*-cube I^n is a triangulable compact manifold, we can apply the results of the previous paragraphs to the case of absolute and relative *n*-dimensional groups of regular homotopy. So we can choose, as representative of any homotopy class, a loop which is pre-cellular w.r.t. a suitable cellular decomposition of I^n . Now, the cellular decompositions of I^n which are relevant for applications, are the triangulations and the subdivisions into cubes (the latter are determinated by a partition into k parts of equal size of every edge of I^n). To construct the absolute groups $Q_n(G,v)$ we consider *o-regular loops* i.e. o-regular functions $f: I^n, I^n \to G, v$ where I^n is the boundary of I^n and v a vertex of G, whereas, in the case of relative groups $Q_n(G,G',v)$ we use the *o-regular relative loops*, i.e. o-regular functions $f: I^n, I^n, J^{n-1} \to G, G', v$ where J^{n-1} is the union of the (n-1)-faces of I^n , different from the face $x_n = 0$. Since the subspaces I_n, J^{n-1} are an

union of faces of I^n , they are closed subspaces, which can be triangulated and subdivided into cubes. So, by applying the third normalization theorem (see Theorems 11 and 14), directly we obtain:

THEOREM 16. – On the previous assumptions, in every o-homotopy class of the group $Q_n(G,v)$ (resp. $Q_n(G,G',v)$) there exists a loop which is pre-cellular w.r.t. a suitable triangulation (subdivision into cubes) of I^n . **Proof.** - Let α be an o-homotopy class and $f \epsilon \alpha$ a loop. By [4], Theorem 15 and its generalization, we can replace f by a c.o-regular function $g \epsilon \alpha$. Moreover, by Theorems 11 and 14, we can replace g by a function $h \epsilon \alpha$ which satisfies the sought conditions, since there always exist triangulations and subdivisions into cubes with mesh $\langle r,$ where r is a predeterminate real number. \Box

20

REMARK. - If G is a finite undirected graph, we obtain Property 13 of [8] again. Nevertheless, we remark that the meaning of properly quasi-constant function of Definition 10 is weaker than that one given there. In fact, now, the constant value of a cell $\boldsymbol{\varepsilon}$ is equal to the value of a maximal cell $\boldsymbol{\varepsilon} \in st(\boldsymbol{\varepsilon})$, whileas, before, the value of $\boldsymbol{\varepsilon}$ must also correspond to that one of a cell of properly upper dimension.

To obtain the third normalization theorem for homotopies, we recall

that the cellular decompositions Γ_1 and Γ_2 are product decompositions. Consequently, we have:

i) To obtain a triangulation of $I^n \times I$, first we must triangulate every prism of the product. To this aim, we remark that it can be done by retaining the same triangulations \widetilde{C} and \widetilde{D} on the respective bases. ii) Whileas, to obtain a subdivision of $I^n \times I$ into k^{n+1} cubes (where k is a multiple of 3), we must complete the subdivision of $I^n \times \left[\frac{1}{3}, \frac{2}{3}\right]$ into $\frac{1}{3}k^{n+1}$ cubes, by giving a subdivision into cubes of the parallelepipeda of the product cellular decompositions Γ_1 and Γ_2 . Then we have:

THEOREM 17. - On the previous assumptions, let f,g be two o-homotopic loops which are pre-cellular w.r.t. the triangulations T and T' (subdivisions into cubes Q and Q') of I^n . Then, between f and g there exists a homotopy which is pre-cellular w.r.t. a suitable triangulation (subdivision into cubes), which induces on $I^n \times \{0\}$ and $I^n \times \{1\}$ triangu lations (subdivisions into cubes) finer than T and T' (than Q and Q'). \Box

REMARK 1. - If G is a undirected graph we obtain Property 14 of [8] again. Moreover now we can avoid the extension k of the c.o-regular function, by choosing as image of a cell \mathbf{G} , whose closure intersects the basis $S \times \{0\} (S \times \{1\})$, the value of any maximal cell of $\mathbf{G} \cap (S \times \{0\})$ $(\mathbf{G} \cap (S \times \{1\}))$.

REMARK 2. - The subdivision into cubes is useful to obtain the regular homotopy groups by blocks of vertices of G. (See [10]).