and 12 ，we also obtain：

THEOREM 15．－（The third normalization theorem for homotopies of functions between $(n+1)$－tuples）．Let S, S_{1}, \ldots, S_{n} be a（ $n+1$ ）－tuple of topological spaces，where S is a compact triangulable space，S_{1}, \ldots ， S_{n} are closed triangulable subspaces，G, G_{1}, \ldots, G_{n} a $(n+1)$－tuple of finite direcited graphs，C, C_{1}, \ldots, C_{n} and D, D_{1}, \ldots, D_{n} two finite cellular decompositions of S, S_{1}, \ldots, S_{n} and $e, f: S, S_{1}, \ldots, S_{n} \rightarrow G_{1}, \ldots, \ldots$ ， G_{n} two functions pre－celzuzar w．r．t．C, C_{1}, \ldots, C_{n} and D, D_{1}, \ldots, D_{n} respectively，which are o－homotopic．Then，from any finite cellular decomposition of the $(n+1)$－tuple $S x\left[\frac{1}{3}, \frac{2}{3}\right], S_{1} \times\left[\frac{1}{3}, \frac{2}{3}\right], \ldots, S_{n} \times\left[\frac{1}{3}, \frac{2}{3}\right]$ ，of suitable mesh，which induces on the bases decompositions finer than C, C_{1}, \ldots, C_{n} and D, D_{1}, \ldots, D_{n} ，we obtain a finite celluzar decomposition $\Gamma, \Gamma_{1}, \ldots, \Gamma_{n}$ of the $(n+1)-t u p l e ~ S \times I, S_{1} \times I, \ldots, S_{n} \times I$ ，and a homotopy between e and f ，which is a pre－celzular function w．r．t．$\Gamma, \Gamma_{1}, \ldots, \Gamma_{n} . \square$

8）Case of homotopy groups．
ニニニニニニニニニ＝＝ニ＝＝＝ニニ＝ニ＝＝＝＝＝＝＝＝

Since the n－cube I^{n} is a triangulable compact manifold，we can apply the results of the previous paragraphs to the case of absolute and relative n－dimensional groups of regular homotopy．So we can choose， as representative of any homotopy class，a loop which is pre－cellular w．r．t．a suitable cellular decomposition of I^{n} ．Now，the cellular decompositions of I^{n} which are relevant for applications，are the triangulations and the subdivisions into cubes（the latter are deter－ minated by a partition into k parts of equal size of every edge of I^{n} ）． To construct the absolute groups $Q_{n}(G, v)$ we consider o－regular Zoops i．e．o－regular functions $f: I^{n}, \dot{I}^{n} \rightarrow G, v$ where \dot{I}^{n} is the boundary of I^{n} and v a vertex of G ，whereas，in the case of relative groups $Q_{n}\left(G, G^{\prime}, v\right)$ we use the o－regular relative loops，i．e．o－regular functions $f: I^{n}, \dot{I}^{n}, J^{n-1} \rightarrow G, G^{\prime}, v$ where J^{n-1} is the union of the $(n-1)$－faces of I^{n} ， different from the face $x_{n}=0$ ．Since the subspaces \dot{I}_{n} ，J^{n-1} are an union of faces of I^{n} ，they areclosed subspaces，which can be triangu－ lated and subdivided into cubes．So，by applying the third normali－ zation theorem（see Theorems ll and 14），directly we obtain：

THEOREM 16．－On the previaus assumptions，in every o－homotopy class of the group $Q_{n}(G, v)\left(\operatorname{resp} . Q_{n}\left(G, G^{\prime}, v\right)\right)$ there exists a loop which is pre－cellular w．r．t．a suitable triangulation（subdivision into cubes） of I^{n} ．

Proof. - Let α be an o-homotopy class and $f \in \alpha$ a loop. By [4], Theorem 15 and its generalization, we can replace f by a c.o-regular function $g \in \mathcal{C}$. Moreover, by Theorems 11 and 14 , we can replace g by a function $h \in \alpha$ which satisfies the sought conditions, since there always exist triangulations and subdivisions into cubes with mesh < r, where r is a predeterminate real number. \square

REMARK. - If G is a finite undirected graph, we obtain Property l3 of [8] again. Nevertheless, we remark that the meaning of properly quasi-constant function of Definition 10 is weaker than that one given there. In fact, now, the constant value of a cell σ is equal to the value of a maximal cell $\tau \epsilon$ st (σ), whileas, before, the value of σ must also correspond to that one of a cell of properly upper dimension.

To obtain the third normalization theorem for homotopies, we recall that the cellular decompositions Γ_{I} and Γ_{2} are product decompositions. Consequently, we have:
i) To obtain a triangulation of $I^{n} X I$, first we must triangulate every prism of the product. To this aim, we remark that it can be done by retaining the same triangulations \widetilde{C} and \widetilde{D} on the respective bases. ii) Whileas, to obtain a subdivision of $I^{n} \times I$ into k^{n+1} cubes (where k is a multiple of 3), we must complete the subdivision of $I^{n} \times\left[\frac{1}{3}, \frac{2}{3}\right]$ into $\frac{1}{3} k^{n+1}$ cubes, by giving a subdivision into cubes of the parallelepipeda of the product cellular decompositions Γ_{1} and Γ_{2}.

Then we have:

THEOREM 17. - On the previous assumptions, let f,g be two o-homotopic loops which are pre-cellular w.r.t. the triangulations T and T^{\prime} (subdivisions into cubes Q and Q^{\prime}) of I^{n}. Then, between f and g there exists a homotopy which is pre-cellular w.r.t. a suitable triangulation (subdivision into cubes), which induces on $I^{n} \times\{0\}$ and $I^{n} \times\{1\}$ triangu lations (subdivisions into cubes) finer than T and T^{\prime} (than Q and Q^{\prime}). ロ

REMARK 1. - If G is a undirected graph we obtain Property 14 of [8] again. Moreover now we can avoid the extension k of the c.o-regular function, by choosing as image of a cell σ, whose closure intersects the basis $S \times\{O\}(S \times\{1\})$, the value of any maximal cell of $\bar{\sigma} \cap(S \times\{0\}$ $(\bar{\sigma} \cap(S \times\{1\})$).

REMARK 2. - The subdivision into cubes is useful to obtain the regular homotopy groups by blocks of vertices of G. (See[10]).

