to f.

Proof. - By Proposition 28 of [5] and Theorem 16 of [4] there exists a closed neighbourhood U of S^{\prime} and an extension $k: S, U \rightarrow G, G^{\prime}$ which is
 obtain the result by using Proposition 9 for the function $k: S, U \rightarrow G, G^{\prime}$.

REMARK. - If G is an undirected graph, the function g can be choosen quasi-constant. Moreover if S is a compact metric space, we have only to consider the couples of vertices rather than the n-tuples and to determine $\varepsilon_{1}=\inf \left(d\left(A_{i}^{f}, A_{j}^{f}\right), \forall\right.$ couple a_{i}, a_{j} of non-adjacent vertices of $G, \varepsilon_{2}=\inf \left(d\left(A_{r}^{\prime}, A f_{s}^{\prime}\right)\right), \forall$ couple a_{r}, a_{s} of non-adjacent vertices of G^{\prime}. Then, if we put $r^{\prime}=\inf \left(\varepsilon_{1}, \varepsilon_{2}\right)$, as in Remark 3 to Theorem 3, we can choose a covering $P=\left\{x_{j}\right\}, j \in J$, with mesh $<\frac{r^{\prime}}{4}$ (see [8], Corollary 8).
6) The third normalization theorem between pairs.

Now we consider pairs of spaces given by a finite cellular complex C and by a subcomplex C^{\prime} of C; it follows that $\left|C^{\prime}\right|$ is a closed subspace of $|C|$. Since we use completely o-regular functions $f:|C|,\left|C^{\prime}\right|$ $\rightarrow G, G^{\prime}$ balanced by the open set $\left|s t\left(C^{\prime}\right)\right|$ (see [5], Definitions 6 and 12), we put:

DEFINITION 12. - Let C be a finite complex, C^{\prime} a subcomplex of C, G a finite graph and G^{\prime} a subgraph of G. A function $f:|C|,|C| \rightarrow G, G^{\prime}$ is called pre-cellular w.r.t. C, C^{\prime} or C, C^{\prime}-pre-cellular if:
i) $f:|C|,\left|s t\left(C^{\prime}\right)\right| \rightarrow G, G^{\prime}$ is completely o-regular.
ii) $f:|C| \rightarrow G$ is properly C-constant.
iii) $f:|C| \rightarrow G$ is properly C-constant in C^{\prime}.

THROREM II. - (The third normalization theorem between pairs). Let S be a compact triangulable space, S^{\prime} a closed triangulable subspace of S, G a finite directed graph, G^{\prime} a subgraph of G and $f: S, S^{\prime} \rightarrow G, G^{\prime} a$ completely o-regular function. Then for every finite cellular decomposition C, C^{\prime} of the pair S, S^{\prime}, with suitable mesh, there exists a function $h: S, S^{\prime} \rightarrow G, G^{\prime}$ which is $C, C^{\prime}-p r e-c e l l u l a r ~ a n d ~ c o m p l e t e l y ~ o-h o m o-~$ topic to f.

Proof. - By proceeding as in the proof of Theorem lo, at first we
consider an extension $k: S, U \rightarrow G, G^{\prime}$, where U is a closed neighbourhood of S^{\prime}. Then, by Remark to Proposition 9, we determine a positive real number $r=\inf \left(\frac{\varepsilon_{1}}{2}, \frac{\varepsilon_{2}}{2}, \varepsilon_{3}\right)$, where $\varepsilon_{1}=\inf \left(\operatorname{ent}\left(A_{1}^{k}, \ldots, A_{n}^{k}\right)\right)$, $\forall n-t n p l e$ a_{1}, \ldots, a_{n} non-headed of $G, \varepsilon_{2}=\inf \left(\operatorname{ent}\left(A_{1}^{, k^{\prime}}, \ldots, A_{m}^{\prime},\right)^{\prime}\right)$, $\forall m$-tuple a_{1}^{\prime}, \ldots, a_{m}^{\prime} non-headed of $G^{\prime}, \varepsilon_{3}$ is such that ${ }_{W} \varepsilon_{3}\left(S^{\prime}\right) \subset U$. Since we can use $\left|s t\left(C^{\prime}\right)\right|$ as an open neighbourhood of S^{\prime}, now it is not necessary to construct, as in Proposition 9, a closed neighbourhood K of S^{\prime}, included in U, and to consider the interior $\stackrel{\circ}{K}$.

Then, if C, C^{\prime} is a finite decomposition of S, S^{\prime} with mesh $<r$, it results $\left|\overline{s t\left(C^{\prime}\right)}\right| \subseteq W^{r}\left(S^{\prime}\right)$, since all the cells have diameter $<r$. Afterwards, we construct the c.quasi-regular function $g:|C|,\left|s t\left(C^{\prime}\right)\right| \rightarrow$ G, G^{\prime} by putting, $\forall \sigma \in C$, (see Proposition 9 and Remark 1 to Theorem 3):

$$
g(\sigma)= \begin{cases}\text { a vertex of } H_{G}(\{k(\bar{\sigma})\}) & \text { if } \sigma \in C-s t\left(C^{\prime}\right) \\ \text { a vertex of } H_{G}(\{k(\bar{\sigma})\}) & \text { if } \sigma \in s t\left(C^{\prime}\right)\end{cases}
$$

To construct a c.o-regular o-pattern h, we must separate the cells of C w.r.t. st(C^{\prime}) as before. Moreover, to obtain h properly quasi-constant, we must separate the cells of C w.r.t. C^{\prime} in the following way:
a) cells included in $C-C^{\prime}:\left\{\begin{array}{l}1) \text { cells } \tau \text { maximal in } C \\ 2) \text { cells } \sigma \text { non-maximal in } C\end{array}\right.$
b) cells included in $C^{\prime}:\left\{\begin{array}{l}1) \text { cells } \tau \text { maximal in } C \\ 2 \text {) cells } \tau^{\prime} \text { maximal in } C^{\prime} \text { and non-maximal in } C \\ 3) \text { cells } \sigma^{\prime} \text { non-maximal in } C^{\prime} .\end{array}\right.$

Now (see Theorem 6), by induction, we construct the o-pattern h, by putting at the first step:
 iii) $h\left(\tau^{\prime}\right)=$ a vertex of $H_{G},\left(g\left(s t^{m}\left(\tau^{\prime}\right)\right)\right)$.

If we define, as before, the images of the cells maximal in C^{\prime}, at the second and last step, we put:
$h\left(\sigma^{\prime}\right)=$ a vertex of $H_{G},\left(h\left(s t_{C}^{m},\left(\sigma^{\prime}\right)\right)\right)$.
Hence $h:|C|,\left|s t\left(C^{\prime}\right)\right| \rightarrow G, G^{\prime}$ is the sought function.

REMARK. - If G is an undirected graph, it is not necessary to construct the extension of the function $f:|C|,\left|C^{\prime}\right| \rightarrow G, G^{\prime}$. In fact, if we determine the upper bound $\frac{r^{\prime}}{4}$ of the mesh as in Remark to Theorem 10 , and, consequently, if we consider the cellular decomposition C, C^{\prime}, we can obtain the strongly regular function $g: S,\left|s t\left(S^{\prime}\right)\right| \rightarrow G, G^{\prime}$, by putting, $\forall \sigma \in C$:

$$
g(\sigma)=\left\{\begin{array}{lll}
\text { a vertex of } f(\bar{\sigma}) \quad \text { if } \sigma \in & C-s t\left(C^{\prime}\right) \\
\text { a vertex of } & f(\bar{\sigma}) \cap \sigma^{\prime} & \text { if } \sigma \in \operatorname{st}\left(C^{\prime}\right) .
\end{array}\right.
$$

Moreover, in the construction of the o-pattern h, we have only to sepa-
rate the cells w.r.t. C and C^{\prime}.

Theorem 8 can be generalized by:

THEOREM 12. - (The third normalization theorem for homotopies of functions between pairs). Let S be a compact triangulable space, S^{\prime} a closed triangulable subspace of S, G a finite directed graph, G^{\prime} a subgraph of G, C, C^{\prime} and D, D^{\prime} two finite cellular decompositions of S, S^{\prime} and $e, f: S, S^{\prime} \rightarrow G, G^{\prime}$ two functions pre-celzular w.r.t. C, C^{\prime} and D, D^{\prime} respectively, which are completely o-homotopic. Then, from any finite cellutar decomposition $\Gamma_{2}, \Gamma_{2}^{\prime}$ of the pair $S \times\left[\frac{1}{3}, \frac{2}{3}\right]$, $S^{\prime} X\left[\frac{1}{3}, \frac{2}{3}\right]$ of suitable mesh, which induces on the pairs of bases $S \times\left\{\frac{1}{3}\right\}$ and $S^{\prime} \times\left\{\frac{2}{3}\right\}$ decompositions $\widetilde{C}, \widetilde{C^{\prime}}$ and $\widetilde{D}, \widetilde{D^{\prime}}$ finer than C, C^{\prime} and D, D^{\prime}, we obtain a finite celluzar decomposition Γ, Γ^{\prime} of the pair $S \times I, S^{\prime} \times I$ and a homotopy between e and f which is a Γ, Γ^{\prime}-pre-cellular function.

Proof. - Since $\left|s t\left(C^{\prime}\right)\right|$ and $\left|s t\left(D^{\prime}\right)\right|$ are rispectively balancers (see [5], Definition 12) of e and f in S^{\prime}, the open set $U=\left|s t\left(C^{\prime}\right)\right| \cap\left|s t\left(D^{\prime}\right)\right|$ is a common balancer of e and.f. Now let $F: S \times I, S^{\prime} \times I \rightarrow G, G^{\prime}$ be a complete o-homotopy between e and f and, by Proposition 30 of [5] we can construct a closed neighbourhood V of $S^{\prime} \times I$ and a c. o-regular function $\hat{k}: S \times I, V \rightarrow G, G^{\prime}$, which is a homotopy between e and f. Then, the c.o-homotopy \hat{k} can be replaced by the $c . o-h o m o t o p y ~ M i v e n ~ b y: ~$

$$
M(x, t)=\left\{\begin{array}{lll}
e(x) & \forall x \in S, & \forall t \in\left[0, \frac{1}{3}\right] \\
F(x, 3 t-1) & \forall x \in S, & \forall t \in\left[\frac{1}{3}, \frac{2}{3}\right] \\
f(x) & \forall x \in S, & \forall t \in\left[\frac{2}{3}, 1\right]
\end{array}\right.
$$

and, by considering the restriction of M to $S \times\left[\frac{1}{3}, \frac{2}{3}\right]$, we determine the real number r, upper bound of the mesh (see the proof of Theorem ll). Moreover, if $\Gamma_{2}, \Gamma_{2}^{\prime}$ is a cellular decomposition, which satisfies the conditions of the theorem and with mesh $\langle r$, we can construct the cellular decomposition $\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}, \Gamma^{\prime}=\Gamma_{1}^{\prime} U \Gamma_{2}^{\prime} \cup \Gamma_{3}^{\prime}$ of the pair of cylinders $S \times I, S^{\prime} \times I$, where $\Gamma_{\mathbb{Z}}^{1}, \Gamma_{1}^{\prime}, \Gamma_{2}, \Gamma_{2}^{\prime}$ are the product decompositions, respectively, of $\widetilde{C} \times L_{1},{ }^{\prime} \tilde{C}^{\prime} \times L_{1}, \widetilde{D} \times L_{3}, \widetilde{D^{\prime}} \times L_{3}$ (see Theorem 8). Then we define the function $\hat{g}: S \times I, S^{\prime} \times I \rightarrow G, G^{\prime}$ by putting:

$$
\hat{g}(\sigma)= \begin{cases}M(\sigma), & \forall \sigma \in \Gamma-\Gamma_{2} \\ \text { a vertex of } H_{G}(\{M(\bar{\sigma})\}) & \text { if } \sigma \in \Gamma_{2}-s t \Gamma_{2}\left(\Gamma_{2}^{\prime}\right) \\ \text { a vertex of } H_{G}(\{M(\bar{\sigma})\}) & \text { if } \sigma \in \text { st } \Gamma_{2}\left(\Gamma_{2}^{\prime}\right)\end{cases}
$$

Hence, by Theorem ll, we construct the ofpattern \hat{h} of \hat{g}, by choosing, if $\sigma \in \Gamma-\Gamma_{2}$, as value of $\hat{h}(\sigma)$, the value $\hat{g}(\sigma)=M(\sigma)$. In this way
\hat{h} coincides with M on $S \times\left[0, \frac{1}{3}\right]$ and $S \times\left[\frac{2}{3}, 1\right]$.
REMARK. - If G is an undirected graph, it is not necessary to construct the extension \widehat{k} of the function F. (See Remark to Theorem ll).
7) Case of n subspaces and n subgraphs.
==ニ====================================

The previous results can be easily generalized to the case between $(n+1)$-tuples (see $[3], \oint 8 b$ and $[5], \zeta l l)$.

Let S be a compact topological space, G a finite directed graph, S_{1}, \ldots, S_{n} closed subspaces of S and G_{1}, \ldots, G_{n} subgraphs of G, such that S_{j} is a subspace of S_{i} and G_{j} a subgraph of $G_{i}, \forall i, j=1, \ldots, n$, $j>i$. In this case we have to consider functions $f: S, S_{1}, \ldots, S_{n} \rightarrow$ G, G_{1}, \ldots, G_{n} between $(n+1)$-tuples and their restrictions $f_{1}: S_{1} \rightarrow G_{1}$, $\ldots, f_{n}: S_{n} \rightarrow G_{n}$.

7a) Given a c.o-regular function $f: S, S_{1}, \ldots, S_{n} \rightarrow G, G_{1}, \ldots, G_{n}$, where S is compact and S_{1}, \ldots, S_{n} are closed subspaces, by $[5], \oint l l .6$, we can construct n closed neighbourhoods U_{i} of $S_{i}, i=1, \ldots, n$ and a c.o-regular extension $k: S, U_{1}, \ldots, U_{n} \rightarrow G, G_{1}, \ldots, G_{n}$ such that $k: S, S_{1}, \ldots, S_{n} \rightarrow$ G, G_{1}, \ldots, G_{n} is c.o-homotopic to f. Now, for all the pairs U_{i}, S_{i}, $i=1, \ldots, n$, we determine a closed neighbourhood K_{i} of S_{i}, included in $\stackrel{O}{U}_{i}$. Then, if the filter W is the uniformity of S, by following the proof of Proposition 9, we can obtain:
i) a vicinity $V \in W$ such that $V\left(A_{1}^{k}\right) \cap \ldots \cap V\left(A_{n}^{k}\right) \neq \varnothing$, $\forall r$-tuple a_{1}, \ldots, a_{r} non-headed of G;
ii) $\forall i=1, \ldots, n$ a vicinity Z_{i} of the trace-filter W_{i} of W on $U_{i} \times U_{i}$, such that $Z_{i}\left(A_{1}^{k_{i}}\right) \cap \ldots \cap Z_{i}\left(A_{s}^{k_{i}}\right)=\varnothing$, $\forall s$-tuple a_{1}, \ldots, a_{s} non-headed of G_{i}, and, consequently, we obtain a vicinity $V_{i} \in W / z_{i}=V_{i} \cap\left(U_{i} \times U_{i}\right)$. At least, we choose a symmetric vicinity W, such that $W \circ W \subset V \cap V_{1} \cap \ldots$ $\cap V_{n}$ and $W\left(K_{i}\right) \subseteq U_{i}, i=1, \ldots, n$.
Given, now, a W-partition $P=\left\{X_{j}\right\}, j \in J$, of the space S, we define a relation $g: S, \stackrel{\circ}{1}_{1}, \ldots, \stackrel{\circ}{K}_{n} \rightarrow G, G_{1}, \ldots, G_{n}$ by putting, $\forall X_{j}, j \in J$, the constant value:

$$
g\left(X_{j}\right)=\left\{\begin{array}{lll}
\text { a vertex of } H_{G}\left(\left\{f\left(X_{j}\right)\right\}\right) & \text { if } X_{j} \cap K_{1}=\varnothing \\
\text { a vertex of } H_{G_{1}}\left(\left\{f_{1}\left(X_{j}\right)\right\}\right) & \text { if } X_{j} \cap K_{1} \neq \varnothing \text { and } X_{j} \cap K_{2}=\varnothing \\
\cdots \cdots \cdots \cdots & \\
\text { a vertex of } H_{G_{n}}\left(\left\{f_{n}\left(X_{j}\right)\right\}\right) & \text { if } X_{j} \cap K_{n} \neq \varnothing
\end{array}\right.
$$

