Proof. - By Proposition 28 of [5] and Theorem 16 of [4] there exists a closed neighbourhood U of S' and an extension $k: S, U \rightarrow G, G'$ which is c.o-regular and such that $k:S,S' \rightarrow G,G'$ is c.o-homotopic to f. Then we obtain the result by using Proposition 9 for the function $k: S, U \rightarrow G, G'$.

REMARK. - If G is an undirected graph, the function g can be choosen quasi-constant. Moreover if S is a compact metric space, we have only to consider the couples of vertices rather than the n-tuples and to determine $\ell_1 = inf(d(A_i^f, A_j^f))$, \forall couple a_i , a_j of non-adjacent vertices of G, $\mathcal{E}_2 = inf(d(A_r^{f'}, A_s^{f'}))$, V couple a_r, a_s of non-adjacent vertices of G'. Then, if we put $r' = inf(\xi_1, \xi_2)$, as in Remark 3 to Theorem 3, we can choose a covering $P = \{X_j\}$, $j \in J$, with mesh $\langle \frac{r'}{4}$ (see [8], Corollary 8).

6) The third normalization theorem between pairs.

Now we consider pairs of spaces given by a finite cellular complex C and by a subcomplex C' of C; it follows that |C'| is a closed subspace of |C|. Since we use completely o-regular functions f:[C], |C'| \rightarrow G,G' balanced by the open set |st(C')| (see [5], Definitions 6 and 12), we put:

DEFINITION 12. - Let C be a finite complex, C' a subcomplex of C, G a finite graph and G' a subgraph of G. A function $f: [C], [C'] \rightarrow G, G'$ is called pre-cellular w.r.t. C,C' or C,C'-pre-cellular if: i) $f: [C], [st(C')] \rightarrow G, G'$ is completely o-regular. ii) $f: |C| \rightarrow G$ is properly C-constant. iii) $f: |C| \rightarrow G$ is properly C-constant in C'.

THROREM 11. - (The third normalization theorem between pairs). Let S

be a compact triangulable space, S' a closed triangulable subspace of S, G a finite directed graph, G' a subgraph of G and $f:S,S' \rightarrow G,G'$ a completely o-regular function. Then for every finite cellular decomposition C,C' of the pair S,S', with suitable mesh, there exists a function h: S,S'->G,G' which is C,C'-pre-cellular and completely o-homotopic to f.

Proof. - By proceeding as in the proof of Theorem 10, at first we

consider an extension $k: S, U \rightarrow G, G'$, where U is a closed neighbourhood of S'. Then, by Remark to Proposition 9, we determine a positive real number $r = inf(\frac{\xi_1}{2}, \frac{\xi_2}{2}, \xi_3)$, where $\xi_1 = inf(enl(A_1^k, \dots, A_n^k))$, $\forall n$ -tuple a_1, \dots, a_n non-headed of G, $\xi_2 = inf(enl(A_1'^k', \dots, A'_n''))$, $\forall m$ -tuple a_1' , \dots, a_m' non-headed of G', ξ_3 is such that $W^{\xi_3}(S') \subset U$. Since we can use |st(C')| as an open neighbourhood of S', now it is not necessary to construct, as in Proposition 9, a closed neighbourhood K of S', included in U, and to consider the interior K.

Then, if C, C' is a finite decomposition of S, S' with mesh $\langle r$, it results $|\overline{st(C')}| \subseteq W^r(S')$, since all the cells have diameter $\langle r$. Afterwards, we construct the c.quasi-regular function g: |C|, $|st(C')| \rightarrow$ G, G' by putting, $\forall G \in C$, (see Proposition 9 and Remark 1 to Theorem 3): $g(G') = \begin{cases} a \text{ vertex of } H_G(\{k(\overline{G})\}) & \text{if } G \in C-st(C') \\ a \text{ vertex of } H_G,(\{k(\overline{G})\}) & \text{if } G \in st(C'). \end{cases}$

To construct a c.o-regular o-pattern h, we must separate the cells of

To construct a one regard of present is, we must explained the certs of C w.r.t. st(C') as before. Moreover, to obtain h properly quasi-constant, we must separate the cells of C w.r.t. C' in the following way: a) cells included in C-C' : $\begin{cases} 1 \end{pmatrix}$ cells γ maximal in C2) cells φ' non-maximal in Cb) cells included in C': $\begin{cases} 1 \end{pmatrix}$ cells γ maximal in C' and non-maximal in C2) cells φ' maximal in C' and non-maximal in C3) cells φ' non-maximal in C'. Now (see Theorem 6), by induction, we construct the o-pattern h, by putting at the first step: i) $h(\gamma) = g(\gamma)$ ii) $h(\varphi') = a$ vertex of $H_{\Gamma'}(g(st^m(\varphi')))$ where $\begin{cases} \Gamma = G \text{ if } \varphi \in C-st(C') \\ \Gamma = G' \text{ if } \varphi \in st(C') \end{cases}$ iii) $h(\varphi') = a$ vertex of $H_{G'}(g(st^m(\varphi')))$. If we define, as before, the images of the cells maximal in C', at the second and last step, we put: $h(\varphi') = a$ vertex of $H_{G'}(h(st^m_{G'}(\varphi')))$. Hence $h: |C|, |st(C')| \to G, G'$ is the sought function. \Box

REMARK. - If G is an undirected graph, it is not necessary to construct the extension of the function f: |C|, $|C'| \rightarrow G, G'$. In fact, if we determine the upper bound $\frac{r'}{4}$ of the mesh as in Remark to Theorem 10, and, consequently, if we consider the cellular decomposition C, C', we can obtain the strongly regular function $g: S, |st(S')| \rightarrow G, G'$, by putting, $\forall d \in C:$ $g(d') = \begin{cases} a \text{ vertex of } f(\overline{d'}) \cap d' & \text{if } d \in st(C'). \end{cases}$

Moreover, in the construction of the o-pattern h, we have only to sepa-

Theorem 8 can be generalized by:

THEOREM 12. - (The third normalization theorem for homotopies of functions between pairs). Let S be a compact triangulable space, S' a closed triangulable subspace of S, G a finite directed graph, G' a subgraph of G, C,C' and D,D' two finite cellular decompositions of S,S' and e,f: S,S' -> G,G' two functions pre-cellular w.r.t. C,C' and D,D' respectively, which are completely o-homotopic. Then, from any finite cellular decomposition Γ_2 , Γ_2' of the pair $S \times \left[\frac{1}{3}, \frac{2}{3}\right]$, $S' \times \left[\frac{1}{3}, \frac{2}{3}\right]$ of suitable mesh, which induces on the pairs of bases $S \times \left\{\frac{1}{3}\right\}$ and $S' \times \left\{\frac{2}{3}\right\}$ decompositions \widetilde{C} , $\widetilde{C'}$ and \widetilde{D} , $\widetilde{D'}$ finer than C,C' and D,D', we obtain a finite cellular decomposition Γ , Γ' of the pair $S \times I$, $S' \times I$ and a homotopy between e and f which is a Γ , Γ' -pre-cellular function.

Proof. - Since |st(C')| and |st(D')| are rispectively balancers (see [5], Definition 12) of e and f in S', the open set $U = |st(C')| \cap |st(D')|$ is a common balancer of e and f. Now let $F: S \times I$, $S' \times I \rightarrow G, G'$ be a complete o-homotopy between e and f and, by Proposition 30 of [5] we can construct a closed neighbourhood V of $S' \times I$ and a c. o-regular function $\hat{k}: S \times I, V \rightarrow G, G'$, which is a homotopy between e and f. Then, the c.o-homotopy \hat{k} can be replaced by the c.o-homotopy M given by:

$$M(x,t) = \begin{cases} e(x) & \forall x \in S, \quad \forall t \in \left[0, \frac{1}{3}\right] \\ F(x, 3t-1) & \forall x \in S, \quad \forall t \in \left[\frac{1}{3}, \frac{2}{3}\right] \\ f(x) & \forall x \in S, \quad \forall t \in \left[\frac{2}{3}, 1\right] \end{cases}$$

and, by considering the restriction of M to $S \times \left[\frac{1}{3}, \frac{2}{3}\right]$, we determine the real number r, upper bound of the mesh (see the proof of Theorem 11). Moreover, if Γ_2 , Γ_2' is a cellular decomposition, which satisfies the conditions of the theorem and with mesh < r, we can construct the cellular decomposition $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$, $\Gamma' = \Gamma_1' \cup \Gamma_2' \cup \Gamma_3'$ of the pair of cylinders $S \times I$, $S' \times I$, where $\Gamma_1, \Gamma_1', \Gamma_2, \Gamma_2'$ are the product decompositions, respectively, of $\widetilde{C} \times L_1$, $\widetilde{C'} \times L_1$, $\widetilde{D} \times L_3$, $\widetilde{D'} \times L_3$ (see Theorem 8).

tions, respectively, of $\widetilde{C} \times L_1$, $\widetilde{C'} \times L_1$, $\widetilde{D} \times L_3$, $\widetilde{D'} \times L_3$ (see Theorem 8). Then we define the function \widehat{g} : $S \times I$, $S' \times I \rightarrow G$, G' by putting: $\widehat{g}(\widehat{\sigma}) = \begin{cases} M(\widehat{\sigma}), & \forall \widehat{\sigma} \in \Gamma - \Gamma_2 \\ a \text{ vertex of } H_G(\{M(\widehat{\sigma})\}) & \text{if } \widehat{\sigma} \in \Gamma_2 - st_{\Gamma_2}(\Gamma_2') \\ a \text{ vertex of } H_G,(\{M(\widehat{\sigma})\}) & \text{if } \widehat{\sigma} \in st_{\Gamma_2}(\Gamma_2'). \end{cases}$ Hence, by Theorem 11, we construct the of pattern \widehat{h} of \widehat{g} , by choosing, $\operatorname{if} \widehat{\sigma} \in \Gamma - \Gamma_2$, as value of $\widehat{h}(\widehat{\sigma})$, the value $\widehat{g}(\widehat{\sigma}) = M(\widehat{\sigma}')$. In this way

$$\hat{h}$$
 coincides with M on $S \times \left[0, \frac{1}{3}\right]$ and $S \times \left[\frac{2}{3}, 1\right]$. \Box

REMARK. - If G is an undirected graph, it is not necessary to construct the extension \hat{k} of the function F. (See Remark to Theorem 11).

7) Case of n subspaces and n subgraphs.

The previous results can be easily generalized to the case between (n+1)-tuples (see [3], §8b and [5], §11). Let S be a compact topological space, G a finite directed graph, S_1, \ldots, S_n closed subspaces of S and G_1, \ldots, G_n subgraphs of G, such that S_j is a subspace of S_i and G_j a subgraph of G_i , $\forall i, j = 1, \ldots, n, j > i$. In this case we have to consider functions $f: S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$ between (n+1)-tuples and their restrictions $f_1: S_1 \rightarrow G_1$,

 $\dots, f_n: S_n \to G_n.$

7a) Given a c.o-regular function $f: S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$, where S is compact and S_1, \ldots, S_n are closed subspaces, by [5], § 11.6, we can construct n closed neighbourhoods U_i of S_i , $i = 1, \ldots, n$ and a c.o-regular extension $k: S, U_1, \ldots, U_n \rightarrow G, G_1, \ldots, G_n$ such that $k: S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$ is c.o-homotopic to f. Now, for all the pairs U_i, S_i , $i = 1, \ldots, n$, we determine a closed neighbourhood K_i of S_i , included in \tilde{U}_i . Then, if the filter \mathcal{W} is the uniformity of S, by following the proof of Proposition 9, we can obtain: i) a vicinity $V \in \mathcal{W}$ such that $V(A_1^k) \cap \ldots \cap V(A_n^k) \neq \emptyset$, Vr-tuple a_1, \ldots, a_r non-headed of G; ii) $\forall i = 1, \ldots, n$ a vicinity Z_i of the trace-filter \mathcal{W}_i of \mathcal{W} on $U_i \times U_i$, such that $Z_i(A_1^{k_i}) \cap \ldots \cap Z_i(A_s^{k_i}) = \emptyset$, Vs-tuple a_1, \ldots, a_s non-headed of

 G_i , and, consequently, we obtain a vicinity $V_i \in \mathcal{W} / Z_i = V_i \cap (U_i \times U_i)$. At least, we choose a symmetric vicinity W, such that $W \circ W \subset V \cap V_1 \cap \ldots$ $\cap V_n$ and $W(K_i) \subseteq U_i$, $i = 1, \ldots, n$.

Given, now, a W-partition
$$P = \{X_j\}$$
, $j \in J$, of the space S , we define a relation $g: S, \mathring{K_1}, \ldots, \mathring{K_n} \rightarrow G, G_1, \ldots, G_n$ by putting, $\forall X_j$, $j \in J$, the

constant value:

$$g(X_{j}) = \begin{cases} \text{a vertex of } H_{G}(\{f(X_{j})\}) & \text{if } X_{j} \cap K_{1} \neq \emptyset \text{ and } X_{j} \cap K_{2} = \emptyset \\ \text{a vertex of } H_{G_{1}}(\{f_{1}(X_{j})\}) & \text{if } X_{j} \cap K_{1} \neq \emptyset \text{ and } X_{j} \cap K_{2} = \emptyset \\ \text{a vertex of } H_{G_{n}}(\{f_{n}(X_{j})\}) & \text{if } X_{j} \cap K_{n} \neq \emptyset. \end{cases}$$