Let X be a non-empty subset of a finite directed graph G. A vertex of X is called a *head* of X in G if it is a predecessor of all the other vertices of X. We denote by $H_G(X)$ the set of the heads of X in G. X is called *headed* if $H(X) \neq \phi$ and *totally headed* if all the non-empty subsets of X are headed.

Given a function $f: S \to G$, where S is a topological space, we denote by capital letter V the set of all the f-counterimages of $v \in G$, and, if we want to emphasize the function f, we write $V^{f} = f^{-1}(v)$.

We call *image-envelope* of a point $x \in S$ by f, and we denote by $\langle f(x) \rangle$, the set of vertices, such that the closure of their f-counterimages includ the point i.e. $v \in \langle f(x) \rangle \iff x \in \overline{V}^f$.

A function $f: S \rightarrow G$ is called *o-regular*, if, for all different $v, w \in G$, such that v is not a predecessor of w, it is $V \cap \overline{W} = \emptyset$. We proved that f is

o-regular iff:

i) $\langle f(x) \rangle$ is headed, $\forall x \in S$;

ii) $f(x) \in H(\langle f(x) \rangle)$, $\forall x \in S$. (See [5], Proposition 2).

So it is natural to define a more restrictive class of functions by sayi that a function $f: S \rightarrow G$ is completely o-regular (or simply c. o-regular) if $i' \rightarrow f(x)$ is totally headed, $\forall x \in S$;

 $ii') f(x) \in H(\langle f(x) \rangle), \forall x \in S.$

Afterwards we also consider functions satisfying only condition i', whic we call completely quasi regular functions. In [5] we proved that a completely quasi regular function can be replaced by a c.o-regular one by constructing the o-patterns of the function (where an *o-pattern* of a function $f: S \rightarrow G$ is a function $g: S \rightarrow G$ such that $g(x) \in H(\langle f(x) \rangle)$, $\forall x \in S$). In the case of pairs of topological spaces S, S' and of pairs of graphs G, Gin [5] in order to introduce the o-patterns, we gave the definition of *balanced* function i.e. of a function $f: S, S' \rightarrow G, G'$ such that $\langle f(x') \rangle =$ $= \langle f'(x') \rangle$, $\forall x' \in S'$. With reference to this we remember that if the subspace S' is open in S, all the functions are balanced.

I) Enlargability of sets in a uniform space.

DEFINITION 1. - Let
$$(S, \mathcal{W})$$
 be a uniform space, where the filter \mathcal{W} is
the uniformity of S. Given a vicinity $\mathcal{W} \in \mathcal{W}$, we put $\mathcal{W}(x) = \{y \in S / (x, y) \in \mathcal{W}\}$, $\forall x \in S$, and $\mathcal{W}(X) = \bigcup \mathcal{W}(x)$, $\forall X \in S$.
 $x \in X$

'REMARK. - If (S,d) is a metric space the subsets $W^{\varepsilon} = \int (n, a) \epsilon S x S / d x S$

 $p,q < \epsilon$, $\epsilon > 0$, constitute a basis of the uniformity induced by the tric d.

DEFINITION 2. - Let (S, W) be a uniform space and W a vicinity of W. len n subsets X_1, \ldots, X_n of S are called W-enlargable if $W(X_1) \cap \ldots \cap X_n$ = p.

REMARK. If X_1, \ldots, X_n are W-enlargable, then all the m-tuples (m > n), stained by adding any n-m subsets of S, are still W-enlargable.

DEFINITION 3. - Let (S,d) be a metric space and X_1, \ldots, X_n subsets of . We call enlargability of the n-tuple X_1, \ldots, X_n , and we denote by $nl(X_1, \ldots, X_n)$ the non-negative real number r such that: $W^{\mathcal{E}}(X_1) \cap \ldots \cap W^{\mathcal{E}}(X_n) \begin{cases} = \emptyset, & \forall \mathcal{E} \leq r \\ \neq \emptyset, & \forall \mathcal{E} > r. \end{cases}$

REMARK 1. - If $\overline{X}_1 \cap \ldots \cap \overline{X}_n \neq \emptyset$, we put $enl(X_1, \ldots, X_n) = 0$, while if one at least among the X_i is empty, we put $enl(X_1, \ldots, X_n) =$ diameter of S.

REMARK 2. - Let X_1, \ldots, X_m be a *m*-tuple of subsets of *S*, obtained by adding to the *n*-tuple X_1, \ldots, X_n any *m*-*n* subsets of *S*, then $enl(X_1, \ldots, X_n) \leq enl(X_1, \ldots, X_m)$.

REMARK 3. - Let $X_1 \neq \emptyset$, $X_2 \neq \emptyset$. It results $enl(X_1, X_2) \leq d(X_1, X_2) \leq 2enl(X_1, X_2)$. In fact if we put $d(X_1, X_2) = \eta$, for all ε there exist $x \in X_1$ and $y \in X_2$ such that $d(x, y) < \eta + \varepsilon$. Hence it is $W^{\eta + \varepsilon}(X_1) \cap W^{\eta + \varepsilon}(X_2) \neq \emptyset$, i.e. $enl(X_1, X_2) < \eta + \varepsilon = d(X_1, X_2) + \varepsilon$. Since ε is arbitrary, it follows $enl(X_1, X_2) \leq d(X_1, X_2)$.

Moreover let $r = enl(X_1, X_2)$. For all $\varepsilon > 0$ it is $W^{r+\varepsilon}(X_1) \cap W^{r+\varepsilon}(X_2) \neq \phi$. Then there exist $z \in W^{r+\varepsilon}(X_1) \cap W^{r+\varepsilon}(X_2)$, $x_1 \in X_1$ and $x_2 \in X_2$ such that $d(X_1, X_2) \leq d(x_1, x_2) \leq d(x_1, z) + d(x_2, z) \leq 2r + 2\varepsilon = 2enl(X_1, X_2) + 2\varepsilon$. Since ε is arbitrary, it follows $d(X_1, X_2) \leq 2enl(X_1, X_2)$. We remark that it may be $d(X_1, X_2) < 2enl(X_1, X_2)$. In fact if $S = \{x_1, x_2\}$ is the discrete metric

space, where
$$d(x_1, x_2) = 1$$
, it is $enl(\{x_1\}, \{x_2\}) = 1$.

PROPOSITION 1. - Let S be a compact space and the filter \mathcal{W} the uniform ity of S ^(*). If, for n subsets X_1, \ldots, X_n of S, it results $\overline{X}_1 \cap \ldots \cap \overline{X}_n$

(*) We remark that in a compact space there exists only one uniformity compatible with the topology (see [2], Cap. 2, §4, n° 1).

= \emptyset , then there exists a vicinity $W \in W$ such that X_1, \ldots, X_n are W-enlargable.

Proof. - We suppose all the sets X_i are non-empty, otherwise the proposition is trivial. Since S is compact, $\forall i = 1, \ldots, n$, the family $\{W(\overline{X}_i)\}$, $\forall W \in \mathcal{W}$, constitute a basis of the neighbourhoods filter of \overline{X}_i (see [2], Cap. 2, §4, n° 3); moreover, since S is normal, the neighbourhoods filter of \overline{X}_i is closed. Consequently, $\{W(\overline{X}_1) \cap \ldots \cap W(\overline{X}_n)\}$ $\forall W \in \mathcal{W}$ is the basis of a closed filter \mathcal{T} . Now, if \mathcal{T} is the null filter, there exists $W \in \mathcal{T}$ such that $W(\overline{X}_1) \cap \ldots \cap W(\overline{X}_n) = \mathcal{I} = W(X_1) \cap \ldots \cap W(X_n)$, i.e. X_1, \ldots, X_n are W-enlargable. Otherwise, since S is compact, there exists a point x adherent to \mathcal{T} , and since \mathcal{T} is a closed filter, $x \in$ $W(\overline{X}_1) \cap \ldots \cap W(\overline{X}_n)$, $\forall W \in \mathcal{W}$. Then it is $x \in W(\overline{X}_i)$, $\forall W \in \mathcal{W}$, $i = 1, \ldots, n$. As the sets $W(\overline{X}_i)$ constitute a basis of the neighbourhoods filter of \overline{X}_i , it follows $x \in \overline{X}_i$, $i = 1, \ldots, n$, i.e. $x \in \overline{X}_1 \cap \ldots \cap \overline{X}_n$. Contradiction

COROLLARY 2. - Let S be a compact metric space and X_1, \ldots, X_n subsets of S such that $\overline{X}_1 \cap \ldots \cap \overline{X}_n = \emptyset$, then it is $enl(X_1, \ldots, X_n) > 0$. \Box

2) The second normalization theorem.

DEFINITION 4. - Let A be a non-empty set, G a finite graph and $P = \{X_j\}$, $j \in J$, a partition of A. A function f: $A \rightarrow G$ is called quasi constant with respect to P (w.r.t.P) or P-constant if the restrictions of f to each X, are constant functions. Moreover, if A is a topological space, $f:A \rightarrow G$ is called weakly quasi-constant w.r.t. P or weakly P-costant if the restrictions of f to the interior of every X, are constant.

REMARK. - If $P' = \{X'_k\}$, $k \in K$, is a partition of A finer than P, i.e. if all the $X_i \in P$ are the union of elements $X'_k \in P'$, then the function f is obviously quasi-contant also w.r.t. P'.

DEFINITION 5. – Let
$$(S, \mathcal{W})$$
 be a uniform space and W a vicinity of \mathcal{W} .
A subset X of S is called small of order W or a W-subset if $X \times X \subseteq W$.
Moreover a family $\mathcal{X} = \{X_j\}$, $j \in J$, is called small of order W or a
W-family if $X_j \times X_j \subseteq W$, $\forall j \in J$.

REMARK 1. - If W is closed and
$$\{X_j\}, j \in J$$
, is a W-family, $\{\overline{X}_j\}, j \in J$, is a W-family.