Let X be a non-empty subset of a finite directed graph G. A vertex of X is called a *head* of X in G if it is a predecessor of all the other vertices of X. We denote by $H_G(X)$ the set of the heads of X in G. X is called *headed* if $H(X) \neq \phi$ and *totally headed* if all the non-empty subsets of X are headed.

Given a function $f: S \to G$, where S is a topological space, we denote by capital letter V the set of all the f-counterimages of $v \in G$, and, if we want to emphasize the function f, we write $V^{f} = f^{-1}(v)$.

We call *image-envelope* of a point $x \in S$ by f, and we denote by $\langle f(x) \rangle$, the set of vertices, such that the closure of their f-counterimages includ the point i.e. $v \in \langle f(x) \rangle \iff x \in \overline{V}^f$.

A function $f: S \rightarrow G$ is called *o-regular*, if, for all different $v, w \in G$, such that v is not a predecessor of w, it is $V \cap \overline{W} = \emptyset$. We proved that f is

o-regular iff:

i) $\langle f(x) \rangle$ is headed, $\forall x \in S$;

ii) $f(x) \in H(\langle f(x) \rangle)$, $\forall x \in S$. (See [5], Proposition 2).

So it is natural to define a more restrictive class of functions by sayi that a function $f: S \rightarrow G$ is completely o-regular (or simply c. o-regular) if $i' \rightarrow f(x)$ is totally headed, $\forall x \in S$;

 $ii') f(x) \in H(\langle f(x) \rangle), \forall x \in S.$

Afterwards we also consider functions satisfying only condition i', whic we call completely quasi regular functions. In [5] we proved that a completely quasi regular function can be replaced by a c.o-regular one by constructing the o-patterns of the function (where an *o-pattern* of a function $f: S \rightarrow G$ is a function $g: S \rightarrow G$ such that $g(x) \in H(\langle f(x) \rangle)$, $\forall x \in S$). In the case of pairs of topological spaces S, S' and of pairs of graphs G, Gin [5] in order to introduce the o-patterns, we gave the definition of *balanced* function i.e. of a function $f: S, S' \rightarrow G, G'$ such that $\langle f(x') \rangle =$ $= \langle f'(x') \rangle$, $\forall x' \in S'$. With reference to this we remember that if the subspace S' is open in S, all the functions are balanced.

I) Enlargability of sets in a uniform space.

DEFINITION 1. - Let
$$(S, \mathcal{W})$$
 be a uniform space, where the filter \mathcal{W} is
the uniformity of S. Given a vicinity $\mathcal{W} \in \mathcal{W}$, we put $\mathcal{W}(x) = \{y \in S / (x, y) \in \mathcal{W}\}$, $\forall x \in S$, and $\mathcal{W}(X) = \bigcup \mathcal{W}(x)$, $\forall X \in S$.
 $x \in X$

'REMARK. - If (S,d) is a metric space the subsets $W^{\epsilon} = \int (n, a) \epsilon S x S / d x S$