Let X be a non－empty subset of a finite directed graph G ．A vertex of X is called a head of X in G if it is a predecessor of all the other vertices of X ．We denote by $H_{G}(X)$ the set of the heads of X in G ．X is called headed if $H(X) \neq \phi$ and totally headed if all the non－empty subsets of X are headed．

Given a function $f: S \rightarrow G$ ，where S is a topological space，we denote by capital letter V the set of all the f－counterimages of $v \in G$ ，and，if we want to emphasize the function f ，we write $V^{f}=f^{-1}(v)$ ．

We call image－envelope of a point $x \in S$ by f ，and we denote by $\langle f(x)\rangle$ ， the set of vertices，such that the closure of their f－counterimages includ the point i．e．．$v \in\langle f(x)\rangle \Leftrightarrow x \in \bar{V}^{f}$ ．

A function $f: S \rightarrow G$ is called o－regular，if，for all different $v, w \in G$, such that v is not a predecessor of w ，it is $V \cap \bar{W}=\varnothing$ ．We proved that f is o－regular iff：
i）$\langle f(x)\rangle$ is headed，$\forall x \in S$ ；
ii）$f(x) \in H(\langle f(x)\rangle), \forall x \in S$ ．（See［5］，Proposition 2）．
So it is natural to define a more restrictive class of functions by sayi that a function $f: S \rightarrow G$ is completely o－regular（or simply c．o－regular）if $\left.i^{\prime}\right)\langle f(x)\rangle$ is totally headed，$\forall x \in S$ ；
ii＇）$f(x) \in H(\langle f(x)\rangle), \forall x \in S$ ．
Afterwards we also consider functions satisfying only condition i^{\prime} ，whic we call completely quasi regular functions．In［5］we proved that a completely quasi regular function can be replaced by a c،o－regular one by constructing the o－patterns of the function（where an o－pattern of a function $f: S \rightarrow G$ is a function $g: S \rightarrow G$ such that $g(x) \in H(\langle f(x)\rangle), \forall x \in S)$ ． In the case of pairs of topological spaces S, S^{\prime} and of pairs of graphs G, G in［5］in order to introduce the o－patterns，we gave the definition of balanced function i．e．of a function $f: S, S^{\prime} \rightarrow G, G^{\prime}$ such that $\left\langle f\left(x^{\prime}\right)\right\rangle=$ $=\left\langle f^{\prime}\left(x^{\prime}\right)\right\rangle, \forall x^{\prime} \in S^{\prime}$ ．With reference to this we remember that if the subspace S^{\prime} is open in S ，all the functions are balanced．

（1）Enlargability of sets in a uniform space．
 ェニニニ

DEFINITION 1．－Let (S, W) be a uniform space，where the filter W is the uniformity of S ．Given a vicinity $W \in W$ ，we put $W(x)=\{y \in S /(x, y)$ €W\}, $\forall x \in S$ ，and $W(X)=\bigcup_{x \in X} W(x), \forall X \subset S$ ．
＇REMARK．－If (S, d) is a metric soace the subsets $W^{\mathcal{E}}=\{(n . a) \epsilon S \times S /$

