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1. Motivations. In the year 1927 Dirac Il] settled the foundations of Quantum

Fields Theory by quantizing the classical Electro-Magnetic Field. Success

and Failure of Quantum Electrodynamic5 were both immediate. The success was

due to the fact that the-theory leads to numerical results in agreement

with experements. This was obtained by using unjustified approximations and

immediately later it was descovered that "better" approximations lead to

meaningless" infinite quantities". Since the theory was made of computations

on "mathematical objects" that were not rigorously defined this fact might

not be too much surpresing; these "mathematical objects" were treated in the

computations as derivable functions defined on ffi4 and operator valued;

the computations used derivation, multiplication, values at points and int~

gration of these objects. Twventy years later procedures of extracting fini

te results from these "infinite luantities" were descrived and gave numerical

results in perfect agreement wjth exper~ments.

After the success of Schwartz's Distribution Theory it was discovered in

the fifties that the simplest mathematical object of the Teory, the free

fields operators, were not functions but (vector valued) distributions. Since

the classical computations begin with products of free fields, therefore

products of distributions, it is generally agreed that the lack of a general

product of distributions is at the origin of the mathematical difficulties

of Quantum Fields Theory. This motivation for the study of multiplication of

distributions is quite classical but since all our methods and ideas stem

from an examination of the computations of Physics, we need to errphasize on it.

2. The problem of multiplication of distributions. In seems quite indispensable

to demand that a general product of Distributions should be associative, distri

butive relatively to addition, that the function 1 should be unit element,

that the usual formula (uv)' = u'v + uv' for the derivation of a product

should hold. It seems also indispensable to demand that:the new product

should generalize the classical product of functions.
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The first computationa1 requirements ~re indispensib1e since they are exp1i

cite1y used as ru1es of computations in Quantum Fie1ds Theory. The second

coherence requirement is a1so indispensab1e from the viewpoint of compatibi1ity

with the c1assica1 computations.

Howewer it is a famous resu1 t of L.Scbwartz [lJ, in 1954, that all these

requirements imp1y the impossibi1ity of such a product.

Since our aim was to g-ive a mathematical sense to the computations of Physics

we be1ieved that the solution might stem from them. Anticipating on the

seque1 of this paper, this lead us to a genera1 multip1ication of distributions

which has all the computational properties. Then from Schwartz's impossibility

result we know that this new multip1ication does not genera1ize - say exactly

- the multip1ication of continuous functions. But we shall check a posteriori

that this new mu1tip1ication will generalize a11 c1assica1 pròducts, but in

a sense slightly weaker than the one leading to Schwartz's impossibi1ity result.

We shall a1so accertain that this weaker sense is quite good enough in practiae.

So that the requirement of coherence wi11 also be satisfied.

3. Successive ideas leading to mu1tip1ication of distributions.

00

a. The idea to use C or holomorphic functions over g>(>J).

If>J denotes any open set in IRn (for some n e lN), a natural idea is that, if
•

T
1

and T
2

are distributions on ">J , their product might be the bilinear form

on ~(>J) defined by

(1)

when ep ranges over '1J)(>J). If C(8)(>J))
00

C functions over 'i.D(>J) (see Colombeau

t'(a:(>J)) admi t by means of the formul a

denotes the space of al1 complex va1ued

OJ) we notice that the elements ~ of

(2) ( a x.
l
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(that will be more strongly motivated later) a natural concept of partial

derivatives in the variable x e n, which generalizes exatly derivation in the

sense of distributions. Using also the pointwise product in t(~(n)) some

(small) pieces of computations of Physics make sense, and this fact attracted

our attention on a possible use of C
OO

or holomorphic functions over a)(n).

But this quite simple interpretation of multiplication of distributions is

not.convenient to explain the computations of Physics. From a purely abstract

viewpoint it is also not convenient: it does not even general ize the usual mul-
00

tiplication of C functions: if f 1,f2 e lf(n) and if ~ e ~(n) one has in

genera l

(3)

b. The idea to consider a quotient. Therefore if we do not abandon the above idea

to use multilinear (more generally holomorphic or C
OO

functions on 'iD(n)it is clear tha

some crucial fact is missing (for instance the two members of (3) should be

identified). At this point let us notice that since gj)(n) is contained and

everywhere dense in ~'(n) end since t'(n) is a Silva space it follows {Colom

beau[l] 0.6.9 and 1.1.6) that the restriction map

t'(~'(n))
r ,

is injective, so that we may consider that t(ll;' (n)) is contained in f(:i)(n))

via this map. The elements of L('t'(n), a) ='t"(n) = ~(n) are the usual C
OO

functions on n and an element f of L(t' (n), a) is ilMntified with the

functi on on

(4)

if x ranges in n and if 0x denotes the Dirac measure at the point x. By

analogy with the preceding idea to define a multiplication of distributions we

might consider the product of two elements f 1 and f 2 of L(~'(n),a) as the

bilinear function
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(5)

when T ranges in ~'(Q). From (4) the product (5) coincides.with the usual

product f 1.f
2

(in c(Q)) if we restrict T to range only in the set

{o} n C t'(Q). This leads to considering in t(t'(Q)) the equivalence relaxxe., -

tion

(6) Vx e Q.

Now if we denote by..A the map

t('t' (Q)) _........ i(Q)

.A4> : x'" 4>(ox) = (.A4>)(x)

(note that tA4> e '~(Q) since it is easy to check that the map

i(Q, t'(Q)). the equivalence relation (6) is exactly

x ... o
x

• •
l S l n

(6')

Now let us consider the diagram:

t('j!'(Q))

u

L(t'(Q),a:)
natura l
identification

The two algebras
Ker.A

and i(Q) are isomorphic.

We remind from this that although ~(~'(Q)) has, concerning multiplication,

defects quite similar to those of the larges space ~~(~)), these defects are
•

repaired by a suitable quotient that makes the quotient algebra isomorphic to

the classical algebra t(Q) (we may also check that the map ~ changes the

derivation (6) into the usual derivation in ~(Q), Le. ~x. (.A4» =Jl( ::. l).
l l

The natural idea that stems from these considerations is that,~perhaps, the

ideal Kert.A of t (t' (Q)) might be extended as an ideal of ~(:V(Q)) and that,
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perhaps, the quotient algebra thus obtained might have good properties concerning

multiplication and derivation.

4. General multiplication of distributions.

<X>

a. Some properties of C functions over ~'(n) and 'g/) (n).

First we reca" that if 4> e ff.b(n» (or t' (~'(n» the element
d

"x., 1

4> defi-

ned by (2) is in i~(n» (respeetively i(f'(n», and that we may define in this

"k1+···+kn

One also maycheck that the usual formula for derivation of a

prove (Col ombeau [2J) o

way 04> for any partial derivation operator O - ---~- o It is immediate to
h

1
k
na , o • "

xl xn
product holdso

Proposition 1. If 4> e C'(t' (n», then Jl (-,..:::.-"- 4» = --:-''':''''''''''(<A<l»,
"x. "x.1 1

•, . e. the

new concept of deri va ti on i n t(é l (n» corresponds vi a the map cA., to the usua 1

derivation in c(n).

This result strengthens the choice of)(2). New if 4> et{a)(n» é is not
x

in general in the domain of 4> and we have to seek for a characterization of KerJl.

which might be extended to 't:(8:l(n».

Oefinition 1. if q = 1,2, .•.. we set

(8) ~q - {<j> e ~(IRn) such that !.p(x)dx = 1 and
•

!(x)'.p(x)dx = O if i = (i
1
,00.,i

n
) eINn •

's

such tha t 1 < Ii I = i
1

+0 .. +i < q}.n-

Obwiously
•
1 S nonq

Jiq+1
void.

e JQq and it is easy to check that for any q the set

Now if.p e .Aq , E: > O and if x e IRn
we set, when À ranges in IR

n ,
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4>( À -
n E

E

x ).

It is immediate to check that

and x, 4> ... o in
E,X X

4> e Jl if 4> e.A and tha t for fi xed 4>
E,O q q

when E ... O. In Col ombeau [2J we prove

Proposition 2. Let 4> e Ker<A be given. Then if 4> e, Jl
q

is given, for any

compact subset K of n there are constants E > O and n > O such that

if O < E < n and X e K.

The converse is obvious: letting E'" 0,-4>(0 ) = O since 4> ... o in
X E,X X-

t'(n). Note also that 04> e Ker.R if 4> e KerA and if O is any partial deri-·

vation.

b. Construction of ~(n). We seek for an ideal of i('iiJ(Q)) such that its inter

section with ~(~'(Q)) should be KerfL Prop. 2 attracts our attention on the

growth of 14>(4)E,X) I l'Ihen E'" O. But an arbitrary element 4>€t('a;{n)) may be

such that 14>(4)E,) 1 tends to +'" very rapidly when E'" O and therefore

its product with an element of KerJl may still have such a very rapid growth.

Therefore we are led to consider elements of t (';ll(Q)) that have a "moderate"
1

grouwth in - when E'" O.
E

Oefinition 2. We say that 4> e t(~(n)) is moderate if for every cOflllact

subset K of n and every parti al derivation O there is an N e Jl such that

for all 4> e '~N there are constants c > O and n > O such that

1(04))

if X e K and O < E < n .

(4) )1<c(1)N.
E,X - E

Equivalently one may obviouslywrite: for every K and O there are N
1

,N 2 e lN



- 7 -

such that V 4> e.fl.
N j c > O and n > O such that,

N
2

\(0<1>)(4> )1 < c ( , )
E,X E

if X e K and O < E < n (we obtain N above by setting N = max(N, ,N 2».

Clearly 0<1> is moderate if <I> is moderate. It is obvious that the product

in -{{ij)(n»of two moderate elements is still moderate. We de note by'fM(:V(n»

the subalgebra of t(~(n» made of the moderate elements. Many elements of

i'(;'b(n» are moderate: any element of f-(f-'(n» is moderate since 4>E,X+oX

when E + O; it is proved in Colombeau [2J that

Proposition 3 Any distribution is moderate

Now we are going to define an ideal Jf of -t(M('J)(n)) such that Jfnf(f' (n» -

- KertA-. We might consider the ideal of 1:
M

('iD(n» spanned by KerA but the

following larger ideal is more convenient.

Oefinition 3. We set

J(' = {<I> e ~M(ill(n» such thatfor everycompact subset K of n and every

parti al derivation o there is an N e IN such that for all 4> E A q with q > N

there are constants c > O and n > O such that

1(0<1>)(4> ) IE,X

if X e K and O < E < n .

q-N< c(e:)

Equivalently one may write that there are N,

ment as above but with q > N, and 1(0<1»(4> )1
- E,X

and N2 E IN and same sta te

( C(E)qèN2 . This implies the

above statement by choosing N = max(N
1

,N
2
).

Other choices of Jf are possible and even ,crucial for some appl ications;

however the general picture of the theory remains quite similar.
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Clearly Jf is an ideal of 'l:M('à)(Iì)) and D~ e Jf if ~ e.N'. One checks

imnediately using prop. 2 that Ker<A= Jfn~U;' (lì)).

Now we define our algebra 3(1ì) as the quotient

Clearly any partial derivative of an element G of ~(Iì) i5 defined as the

class of the corresponding parti al derivative of any representative of G.

•
•Slnceis a subalgebra of a(lìj

C(~'(Iì))

KerJ\.

Since from prop. 3 $' (lì) is contained in 'CM('J)(Iì)), there is a canonical

map from '6D'(Iì) into 'S(Iì), which to each distribution associates its class.

In Colombeau [2} we prove

Proposition 4. The canonical map from ffi' (lì) into

J{n ~l (lì) = {D}), and therefore we may consider that

~(Iì).

a(lì) is injective (i.e.

.;D' (lì) is contained in

We may noti ce that prop. 4 becomes false if we replace in it ID' (lì) by the

space of all continuous multilinear forms on ~(Iì) of degree < 2 indeed

if f
1
,f

2
e t (lì) then the two following functions on 'iù(Iì)

and

are identified in 'j (lì) with the classical product f
1
.f2 e t(lì) (both are in

é(t'(Iì)) and their difference is in Ker<A.).

c. Connection with c~assical products. From Schwartz's impossibility result we

a l ready know tha t the new product i n the al gebra i(lì) cannot coi nc i de with the
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usual product of all continuous functions. This fact that looks rather strange

and unpleasant might be a great defect of the new product in ~ (~) since it

is quite clear- at least from a purely mathematical viewpoint - that the new

multiplication in ~(~) has to be in agreement with the classical multiplication.
~

In order to compare the two multiplications, in this section we denote by B

the new product (in~(n)), and we set the following definition.

Definition 4. Let be given a G e 1(~) and let

sentative of G. If for every 'l' e';j)(~) the complèx

~ e ~M(»(n)) be a repre

number f~ (~ )'l'(x)dx·
E,X

has a l imit when E -+ O, independent on ~ e JI for q large enough and if,
q

when 'l' ranges in ~(~), this limit defines a distribution on ~ , we say that the
'"generalized function G admits an associated distribution. If we denote by G

this associated distribution it is defined by the formula

'"< G, 'l'> - lim f~(~ )'l'(x)dx.
E-+D E,X

It is ìmmediate to check that the above does not depend on the choice of

'"the representative ~ of G, and that G is unique if itexists. One may also

check (Colombeau [2}) that if T e ~(~) then it has an associated distribution

which is T itself. One may also check that the element (6
0

)2 of a{Q) has

no associated distribution. It is obvious that the set of the elements of ~ (~)

which bave an associated distribution forms a linear space, that we denote by

'"~ (~), in the situation

glj (~) c ~(~) c ~(n).

'"The linear map '" is defined on ~ (n), valued in &fJ (~) and such that "'.0'" = "',

'"therefore it may be considered as a projection from ;}(~) onto ~'(~). This

concept of associated distribution is particularly relevant due to the following

resul ts proved in Colombeau [2J.

Theorem 1. a) Let f and 9 be two continuous functions on ~. Then their
-

product f 0 9 in J(nj admits an associated distribution (i.e. f 0 9 e-j(n))
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and this associated distribution is the classical product f.g.

b) Let a e E(n) and let T e ~'(n) be given. Then their product

a0 T in (n) admits an associated distribution (i.e. a 8 T e ~(n)) which is the

classical product a'T of Schwartz's Distribution Theory.

These results show thatin some weaker sense the newproduct is a genera

lization of the classical products: the projection ~ on ~'(n) of the new product

is exacley the classical product. We shall ascertain in the applications that

in this case the two objects f0 9 and f·g give the same numerical results and

in the developpment of the Theory that the kind of result of th 3 holds in

many more general cases and reconcilies the new computations with the classical

computa t i on s.

Many authors have defined a product of distributions by regularization and

passage to the limit (~likusinski [1] and other authors, see Colombeau [2J). Then,

when the product T1·T
2

of two distributions T1 and T2 exists, say in Mikusinski
-.J ,/

[1] 's sense, the element T1 8 T2 of ~ (n) is in ~ (n) and (11 0 T2) = T1·T2.

See Colombeau [2] for details.

Another kind of product of distributions has been defined by Hormander [1J

and Ambrose [1] using the Fourier transform. Then it fèllows from an easy modifi

cation of a proof in Tysk [1J that the same result as above holds also in the

case of the Hormander-Ambrose product (this result was communicated to me by

J. Tysk).

d. Other non linear operations on elements of ~ (n). One may define much more

than the multiplication in ~ (n).

Definition 5 and Theorem 2. If p = 1,2, ... , if f e GM(lR2P) (a classical

notation in Schwartz [2J) and if G1, .•. ,Gp e ~(n) then an element of 3(n),

denoted by f(G 1, ... ,Gp)' is defined as the class of the function f(~1""'~p)

(eiM( (n))) if, for 1 ~ i ~ p, ~i et'M(5)(n)) is an arbitrary representative
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of G..
l

As in the case of mul1iplication the abovegeneralizes exactly the corre-

sponding
00

operation on C functions. For continuous functions, as a generali-

zation of th l.a we ha ve

Theorem 3. In the above conditions 00 f. if GI •... Gp are continuous

functions on n then the element f(G I •... ,Gp) of -<a (n) defined above admits

an associated distribution which is the usual continuous function on n

X ... f(G I (x), ....Gp(x)).

The proofs are i n Col ombeau [2J.

5. The analysis of the new generalized functions.

a- Improved and related concepts. The elements of J (n) may be considered as

generalized functions on n. A more detailed study shows that this concept suffers

from some minor defects that may be easily repaired by rather minor modifications

in definitions. This is done in Colombeau [3] chap. l where also several related

concept, which are motivatéd by examples or by Physics, are introduced. It is of

a particular importance for the applications to know that what we have done in

section 4 is only a gener~ pattern and that some modifications. for instance

in the definition of the ideal N. may be the key of special applications (for

instance "removal of divergences" in Physics).

b- The value of a generaized function at a point. For Physics we need to de

fine the value at arny:pòint x e n of the generalized function on n. For this
-we define an algebra [. containing [ • such that if x e n and G e 1(n)

-then G(x) is in [. In particular the gives a meaning to the value at any point
-of any distribution. It is important to note that [depends on the dimension

nof the space IR of which n is an open set. This "strange" fact is not trouble-

some in the development of the theory and anyway it reflects the basic fact that.

in Physics. Renormalization Theory depends completely on the space-time dimensiono

As an obvious example o (x) = O if x i O whicteo
-o (O) e-C. For the value at

o
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a point of a generalized function see Colombeau [3J chap. 2.

c- Integration of generalized functions. For Physics we also need the integration

of generalized functions. If G e 1(g) and if K is any compact subset of g then

fG(x)dx is naturally defined as an element of [. As an immediate example one may

~heck that if O is in the interior of Kwe have f o (x)dx = 1 and that if O ~ K
K o

then f 0o(x)dx = O; if O is on the boundary of K then f o (x)dx is in It
K l K o

(for instance in one dimension one may compute easily f o (x)dx). In some cases
o o

for G we may define f G(x)dx. All the computations dn integration of generalized
IRn

functions generalize exactly the integral formulas that were explained by Schwartz's

Distribution Theory. For the integration of generalized functions see Colombeau [3J

chap. 3./,

d - Holomorphic generalized functions. If g is an open set in It

ralized functions G e ~ (g) such that -aG = O - 1( a = - (
2

a
ax

•+ ,

there are gene
a

ay ) and

which are not classical holomorphic functions (therefore they are not distri
-butions from the classical hypoellipticity of the a operator in the space

ro'(g~. They are called "generalized holomorphic functions" and, surpresingly

enough, they have many properties of the usual generalized functions. See

Colombeau-Galé [lJ.

e - Vector valued generalized functions. For Physics one needs generalized

functions valued in a bornological algebra. This is a rather straightforward

generalization of the scalar case and this is done in Colombeau [2,3J.

f - Final coments. In short, this new concept of generalized function is at

the origin of a new mathematical analysis, rather similar in its general lines
=

to the classical analysis of C and holomorphic functions, but considerably

more generalo
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6 - Physical applications. These concep~ provide a rigorous mathematical sense

to the classical computations of Physics that were our motivation. In the ma

thematical explanation of these computations, these concepts~xplain heuristic

operations of "removal of divergences" as the appearance of rigorous computa

tions on our generalized functions. However the mathematics involved are com

plicated by thefact thatwe have to deal with objec~whose values are unboun

ded operators on a Hilbert space and the paper Colombeau. Perrot [lJ may only

be considered as a demonstration of the use of the new mathematical tool in

a rough and uncomplete mathematical clearing: for instance an explanation of

the approximation of scattering operators by renormalized perturbation seri es

is lacking, and the new mathematical formulation of the removal of divergences

in these series in only sketched. Further mathematical improvements would be

welcome or indispensable. In Colombeau-Perrot [1J we only·consider the 01>4

model in a 4-dimensional space time but it seems that this work might be more·

a immediately adapted to other fields. However particular difficulties,

such as infra-red divergences in Quantum Electrodynamics, were never considered.

7 - Contribution of J. Sebastiao e Silva. The basic mathematical tool of this

new theory of generalized functions is Differential Calculus and Holomorphy in

local1y convex spaces. The author explains these theories in the book· Colom

beau [1J, and in this book he explains how he was lead to consider that the
'"best definitions of C and holomorphic maps betweenlocally convex spaces are

the ones settled by J. Sebastiao e Silva already in 1956 (Sebastiao e Silva

[1 ,2,3J. Sothe .book Colombeau [1] might be considered as some continuation
~

of Sebastiao e Silva's work in this domain. This work of the author could not

also have been done without the strong impulse given by L.Nachbin (cf. [1], [2J,

[3J, [4J and [5J) to Infinite Dimensional Holomorphy in the last fifteen years.


