ALGEBRE ETEROGENEE E SEGNATURE

O.- DEFINIZIONE

Dicesi algebra (eterogenea) una coppia $(\mathcal{J},0)$ ove \mathcal{J} è una famiglia di insiemi e 0 una famiglia di operazioni (totali) i cui domini sono prodotti cartesiani tra insiemi di \mathcal{J} , e i codomini sono insiemi di \mathcal{J} .

Se A è un insieme di \mathfrak{I} , una costante di A è un elemento a ϵ A che può essere completamente individuato con una operazione

$$f_a: \{\Phi\} \longrightarrow A$$

(del tutto definita dal suo valore in \mathbf{v}) ponendo $\mathbf{f}_{\mathbf{a}}(\mathbf{v}) = \mathbf{a}$.

Poichè $\{v\} = \{f \mid f: v \rightarrow A\} = A^o$ si può concluæ dere che in un'algebra le costanti sono identificabili con operazioni nullarie.

Gli insiemi della famiglia J diconsi domini o soste= gni dell'algebra.

1.- ESELPIO

$$\underline{L} = (L, N, B, \vee, 11, +, =, \lambda, 0, 1, T, F)$$

 $L \equiv \{a,b\}^{*}$ i,e l'insieme di stringhe su a,b

N = l'insieme dei naturali 0,1,2,...

B = l'insieme dei valori di verità T,F

$$\sim$$
: L×1 \rightarrow L ove $\alpha \sim \beta$ è la concatenazione delle stringhe α e β

$$+: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$$
 " $x+y$ è la somma di $x \in y$

=:
$$L \times L \longrightarrow B$$
 " $(\alpha = \beta) = T \iff \alpha \in \text{uguale a } \beta$ (segue)

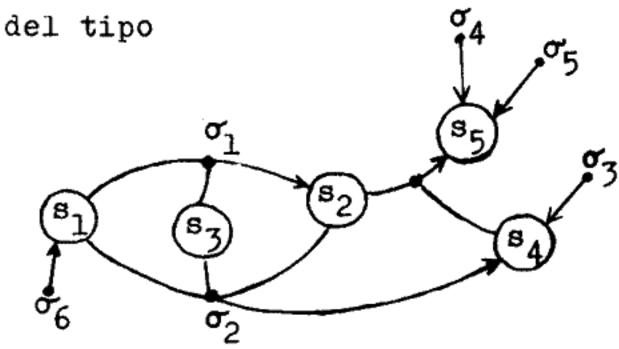
$$\lambda \in L$$
 (stringa vuota) i.e. $\lambda : L^{0} \longrightarrow L$
 $0, 1 \in \mathbb{N}$ i.e. $0, 1 : N^{0} \longrightarrow N$
 $T, F \in B$ i.e. $T, F : B^{0} \longrightarrow B$

2.- DEFINIZIONE

Una algebra $\underline{\underline{L}}$ ' dicesi simile ad $\underline{\underline{L}}$ se i suoi domini sono degli insiemi \underline{L} ', \underline{N} ', \underline{B} ', in corrispondenza a \underline{L} , \underline{N} , \underline{B} , rispettivamente e le sue operazioni \checkmark ', $|\cdot|$ ', +', =', λ ', 0', 1', T', F', in corrispondenza a quelle di $\underline{\underline{L}}$ sono tali che operazioni corrispondenti agiscono tra domini corrispondenti, cioè

3.- DEFINIZIONE

Un metodo per trattare comodamente la similarità tra algebre è quello di individuare tipi di similarità con multi= grafi dette <u>segnature</u>, ovvero insiemi di nodi collegati da multifrecce aventi più nodi di partenza e un nodo di arrivo,



 s_1, s_2, s_3, s_4, s_5 , diconsi sorte o tipi $\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6$, diconsi operatori

4. DEFINIZIONE

Una algebra $\underline{\underline{A}}$ dicesi di segnatura Σ , o Σ -algebra se in $\underline{\underline{A}}$ vi sono tanti domini A_s , A_s , ... quante sono le sorte s_1, s_2, \ldots della segnatura Σ e tante operazioni $\sigma_1^A, \sigma_2^A, \ldots$ quante sono le multifrecce (operatori) di Σ in modo tale che se σ è una multifreccia di rango

$$s_1 s_2 \dots s_k \longrightarrow s$$
 cioè $s_1 s_2 \dots s_k = s_1 s_2 \dots s_k = s_1$

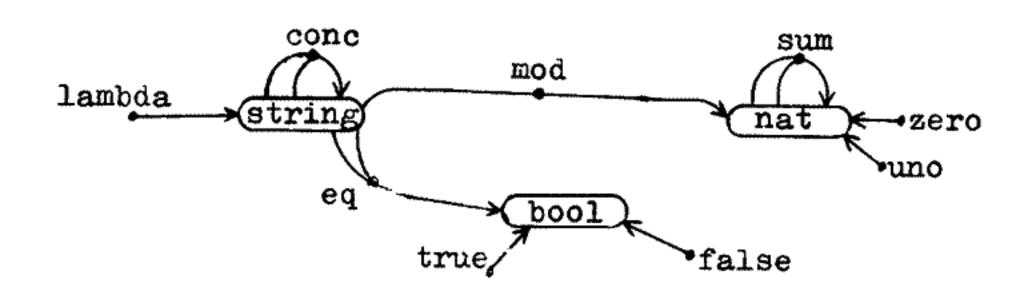
allora in A si avrà

$$\sigma^{A}: A_{s_{1}} \times A_{s_{2}} \times \dots \times A_{s_{k}} \longrightarrow A_{s}$$

(Le multifrecce senza sorte di partenza individuano ope= razioni nullarie, cioè costanti)

5. ESELTIO

L'algebra $\underline{\underline{L}}$ dell'esempio l è una Σ -algebra per la seguente segnatura Σ

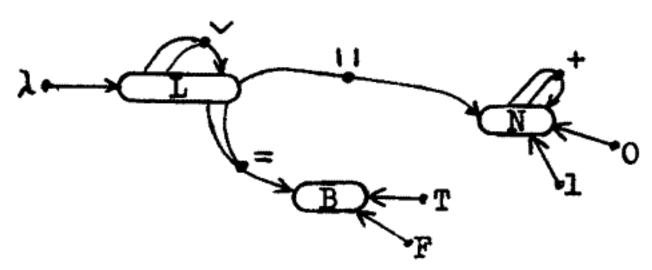


υνe :

$$conc^{L} = \checkmark$$
 $eq^{L} = =$ $uno^{L} = 1$ $mod^{L} = 11$ $lambda^{L} = \lambda$ $true^{L} = T$ $sum^{L} = +$ $zero^{L} = 0$ $false^{L} = F$

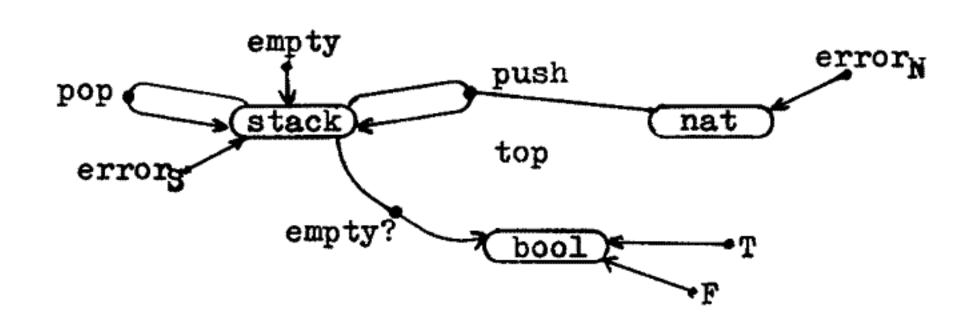
ovvero \sum fornisce un sistema di notazioni per domini e operazioni di \underline{L} .

Possiamo a questo punto indicare la Σ-algebra L con un grafo analogo a quello di sopra ove ai nodi sono associati insiemi e alle multifrecce sono associate ope= razioni:



6. ESEMPIO

Sia Σ la seguente segnatura



Pè una Σ-algebra, ove

$$empty^{P} = \lambda$$
 (stringa nulla)

$$T^P = T ; F^P = F$$

$$push^{P}(n,n_1n_2...n_k) = (nn_1n_2...n_k)$$

$$pop^{P}(nn_1n_2...n_k) = (n_1n_2...n_k)$$

$$top^{P}(nn_{1}n_{2}...n_{k}) = n$$

$$empty?^{P}(S) = T \iff S = empty^{P}$$

7.- CONVENZIONI NOTAZIONALI

- 1) Well seguito Σ indica una generica segnatura di sorte \mathcal{S} , inoltre u indicherà un generico elemento di \mathcal{S}^* , ovvero $u = s_1 s_2 \cdots s_k$ $(k=0 \implies u=\lambda)$ con $s_1, s_2, \ldots s_k \in \mathcal{S}$ (insieme di sorte)
- 2) sia (A_s | $s \in \mathcal{I}$) una famiglia di insiemi \mathcal{I} -indiciz= zata e (f_s | $s \in \mathcal{I}$) una famiglia di funzioni \mathcal{I} -indi= cizzata

Au staper
$$A_{s_1} \times A_{s_2} \times \cdots A_{s_k}$$
 $(A_{\lambda} = \{ \mathbf{D} \})$

fu " $f_{s_1} \times f_{s_2} \times \cdots f_{s_k}$ $(f_{\lambda} : A_{\lambda} \rightarrow)$

ove
$$x \in A_{u} \iff x=(x_{1}, x_{2}, \dots x_{k}) \in x_{1} \in A_{s_{1}} \dots x_{k} \in A_{s_{k}}$$

$$f_{u}x = (f_{s_{1}}x_{1}, f_{s_{2}}x_{2}, \dots f_{s_{k}}x_{k})$$

3) Si aubrevia con $\sigma \in \Sigma$ la scrittura più precisa $\sigma \in \bigcup_{s \in \mathscr{S}} \Sigma_{u,s}$

spesso generalizzaremo tale abbreviazione ad una fami=
glia qualsiasi $\mathcal{J} = (\mathcal{J}_i \mid i \in I)$, scrivendo $f \in \mathcal{J}$ per $f \in \bigcup_{i \in I} \mathcal{J}_i$

8.- OSSERVAZIONE

Una segnatura può essere equivalentemente definita come una famiglia di insiemi disgiunti

($\mathcal S$ insieme delle sorte e $\Sigma_{u,v}$ degli operatori di rango $u \to s$).

In tal modo una \sum -algebra è individuata da una coppia (A, α)

ove $A=(A_s|s \in \mathcal{S})$ e $\alpha=(\sigma^A|\sigma \in \Sigma)$

($\sum_{\lambda,\,s}$ o più semplicemente \sum_s indica l'insieme degli operatori nullari di \sum).

E evidente che algebre di uguale segnatura sono simili e che viceversa date delle algebre simili può trovarsi una segnatura \sum per cui tutte risultino \sum -algebre.

9.- ESERCIZIO

Definire delle segnature e algebre di quelle segna= ture.

10.- CONVENZIONE

Data una segnatura Σ , Σ -alg indica la classe di tutte le Σ -algebre.