Notes: (1) $\frac{4}{45}(11 p+10)<p-\frac{1}{4} \sqrt{p}+\frac{25}{16}$ for $p \geq 47$.
(2) $\frac{4}{45}(11 p+10)<p-\sqrt{p}+1$ for $p \geq 2017$.
20. $k-C A P S \operatorname{IN} \operatorname{PG}(n, q), n \geq 3$.

A k-cap in $P G(n, q)$ is a set of k points no 3 collinear. Let $m_{2}(n, q)$ be the maximum value that k can attain. From $\S 19, m(2, q)=$ $=m_{2}(2, q)$. For $n \geq 3$, the only values known are as follows:

$$
\begin{aligned}
& m_{2}(3, q)=q^{2}+1, \quad q>2 \\
& m_{2}(d, 2)=2^{d} \\
& m_{2}(4,3)=20 ; \\
& m_{2}(5,3)=56 .
\end{aligned}
$$

See [8] for a survey on these and similar numbers. The sets corresponding to these values for $m_{2}(d, q)$ have been classified apart from $\left(q^{2}+1\right)$-caps for q even with $q \geq 16$.

As for the plane, let $m_{2}(n, q)$ be the size of the second largest complete k-cap. Then, from [9], chapter 18 ,

$$
m_{2}^{\prime}(3,2)=5 \quad, m_{2}^{\prime}(3,3)=8 .
$$

We now summarize the best known upper bounds for $m_{2}^{\prime}(n, q)$ and $m_{2}(n, q)$.
THEOREM 20.1: ([7]) For q odd with $q \geq 67$,

$$
m_{2}^{\prime}(3, q) \leq q^{2}-\frac{1}{4} q \sqrt{q}+2 q .
$$

THEOREM 20.2: ([10]) For q even with $q>2$,

$$
m_{2}^{\prime}(3, q) \leq q^{2}-\frac{1}{2} q-\frac{1}{2} \sqrt{q}+2 .
$$

This gives that $m_{2}^{\prime}(3,4) \leq 15$.
THEOREM 20.3: $([10]) m_{2}^{\prime}(3,4)=14$.
In fact, a complete 14-cap in $P G(3,4)$ is projectively unique and is obtained as follows.

Let π be a $\operatorname{PG}(2,2)$ in $P G(3,4)$, let P be a point not in π, and let Π be a $P G(3,2)$ containing P and π. Each of the seven lines joining P to a point of π contains three points in π and two points not in 7 . The 14 points on the lines through P not in $I I$ form the desired cap.

THEOREM 20.4: ([7]) For q odd, $\mathrm{q} \geq 121, \mathrm{n} \geq 4$,

$$
m_{2}(n, q)<q^{n-1}-\frac{1}{4} q^{n-3 / 2}+3 q^{n-2} .
$$

THEOREM 20.5: ($[10]$) For even, $q \geq 4, n \geq 4$,

$$
m_{2}(n, q) \leq q^{n-1}-\frac{1}{2} q^{n-2}+\frac{5}{2} q^{n-3} .
$$

